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In this paper, we present a design experiment in a “Teaching Mathematics” course for 

prospective elementary teachers where we sought to develop a measurement approach to 

fractions.  We focus on the conceptualization of the mathematical content of the approach. 

We attribute our progress in the conceptualization to our efforts to overcome the challenges 

we had to face in bringing our students – prospective teachers – to thinking about fractions 

in a theoretical way. We describe some of these challenges in the paper. The approach was 

inspired by an approach under the same name, but addressed to children, developed by the 

psychologist V.V. Davydov and described in the paper by Davydov and Tsvetkovich 

(1991).  Davydov’s  measurement approach proposes that, in order to develop a concept of 

fraction with sources in reality, children’s attention should be directed to multiplicative 

relationships between quantities defined in terms of concrete units (such as kilos, inches or 

cups) rather than to indeterminate objects such as pizzas or cakes.  Our original contribution 

is a systemic study of these relationships and operations on them, as a theoretical system, 

using definitions derived from measurement situations, mathematical reasoning based on 

these definitions and generalizations of observed patterns. It is intended to support a 

gradual process of abstraction of the notion of fraction as an abstract number that represents 

a measure of the relationship between two quantities. Furthermore, our proposal for 

conceptualizing fractions in this way is addressed to teachers, not to children.  By its focus 

on relational reasoning about quantities and gradual construction of a theoretical system, 

the approach both requires and is expected to foster the development of quantitative 

reasoning and theoretical thinking. 

Introduction 

The aim of the paper is to describe a measurement approach to fractions for 

prospective elementary teachers that we developed in the course of a design experiment in 

the sense of (Cobb, diSessa, Lehrer, & Schauble, 2003; Cobb, Zhao, & Dean, 2009). Three 

iterations of the experiment were conducted, in the winter terms of 2013 (Year I), 2014 

(Year II) and 2015 (Year III), with three cohorts of undergraduate students taking a 

“Teaching Mathematics” course offered as part of an Elementary Education program at a 

North-American university. The experiment took place within the institutional frame of 

this 13-week course, as the 8-week unit on fractions
1
. In the course, the second author was 

the instructor in all three iterations; the first author was present in all classes on fractions in 

Years I and II as an observer, taking notes and interacting with individual students during 

small group activities. Both authors collaborated in the conceptualization of the 

measurement approach, inspired by an approach under the same name, but addressed to 

children, described in (Davydov & Tsvetkovich, 1991).    

The paper focuses on this work of conceptualization.  It is the part of a design 

experiment where “the research team… specif[ies] the significant disciplinary ideas and 

forms of reasoning that constitute the prospective goals or endpoints for student learning 

                                                      
1 The remaining 5 weeks of the course were devoted to geometry.  
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[or] propose an alternative conception of the domain” (Cobb, diSessa, Lehrer, & Schauble, 

2003, p. 10). The domain of which we propose an alternative conception is fractions 

knowledge for future elementary teachers.  

The conception rests on the assumption, shared by many mathematics educators, that 

future elementary teachers’ understanding of fractions is often made of two disconnected 

parts:  the material conception or the visually-based idea of fraction of something, and the 

formal conception or the formal calculus on expressions of the form  
𝑎

𝑏
 with  𝑎  and  𝑏  

being whole numbers.  We share with other mathematics educators the conviction that it is 

important to help prospective teachers to connect the material and the formal parts of their 

conceptions (Parker & Baldridge, 2003; Van de Walle & Lovin, 2006; Reys, Lindquist, 

Lambdin, Smith & Colgan, 2010; Sowder, Sowder  & Nickerson, 2011; Lamon, 2012). But 

we propose to do it differently: by means of a theory of fractions of quantities.   

Fraction of a quantity is a mathematical theorization of the visual and intuitive idea of 

fraction of something. In the material conception, one thing (pizza, cake, shaded part of a 

diagram) is the fraction  
𝑎

𝑏
 of something (called a “whole” or a “unit”), when the thing is 

made of 𝑎  equal parts and the whole is made of  𝑏  such parts
2
. When we make explicit the 

quality of the objects we are comparing in this situation (length, area, volume, weight, or 

number of elements), and use an explicit unit to measure this quality, then we are not 

comparing objects but quantities (Thompson, 1994). When we replace the equal parts into 

which the objects are divided by the units in which their chosen quality is measured, we 

obtain the notion of fraction of a quantity. This notion, defined as follows, constitutes the 

foundation of our proposed theory: 

Quantity  𝐴  is the fraction   
𝑎

𝑏
   of quantity  𝐵  if there is a common unit  𝑢  such that  𝐴  measures  

𝑎  units  𝑢  and  𝐵  measures  𝑏  units  𝑢.   

The plan of the course was as follows. We would start by questioning the common 

textbook fraction exercises such as “How much pizza has been eaten?” accompanied by 

drawings of circular pizzas cut into slices. We would ask, how is the amount of the pizza 

measured? Is it the weight? The surface area? The number of slices? The number of 

calories?  We would bring a real pizza and kitchen scales to the classroom. We would 

weigh the whole pizza and each slice in grams or ounces, and we would find that each slice 

is a different fraction of the weight of the whole pizza, because a real pizza is usually not a 

perfect circle and the slicing is also quite rough. For example, if the whole pizza weighs 

548 g, and has been cut into 8 slices, one slice may weigh 72 g, and another – 68 g. Then 

the weight of the former slice is an “ugly” fraction –  72/548 –  of the weight of the whole 

pizza (or 18/137, if we use 4 g as the common unit of measure). For 72 g to be the ideal 

one-eighth of the weight of the whole pizza, the latter would have to be 576 g, not 548 g.  

Based on this and other similar experiences (e.g., comparing the volumes of an apple and 

of its parts), students would already have some idea of the notion of fraction of a quantity 

as we intended it.   

Our notion of fraction of quantity is even more primitive than the common material 

conception described above (part-whole relationship) because there is no intermediary 

abstraction implicitly made, as it is the case when one looks at a diagram or a picture of a 

chocolate chip cookie cut into parts, and assumes the parts to be “equal” in some implicit 

sense. That children do not spontaneously make these idealizations is evident in how they 

                                                      
2 We assume that 𝑎  and  𝑏  represent whole numbers, and  𝑏  is non-zero.  
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would argue that a cookie cut “in half” is not fairly shared if one of the sharers ends up 

with more chocolate chips (thus the object at stake has not only area, but also number of 

chocolate chips, as measurable qualities of interest).  

Fraction of quantity is thus closer to the concrete, but it is also amenable to doing 

authentic mathematics, we argue, via two mechanisms: quantification, which is, 

essentially, looking at objects for their quantifiable aspects, and theorization, or stabilizing 

meanings via definitions and reasoning within a system, based on agreed upon rules. Both 

capture ways of inquiry into reality that mathematics, as a human practice, has always been 

advancing.  

The definition of fraction of a quantity is thus used to derive – by means of theoretical 

thinking (Sierpinska, Bobos, & Pruncut, 2011) and quantitative reasoning (Thompson, 

1993; 1994) – answers to problems about relations between quantities. Generalizations of 

these solutions serve, later on, to motivate the rules of operations on abstract fractions – the 

object of the aforementioned formal conception of fraction – by showing reasons why 

these operations have been defined the way they were.  

The process of transition from fractions of quantities to abstract fractions is supported 

by problems of comparison of fractions of quantities, similar to some of the problems that 

are associated with the “ratio sub-construct” of fractions in the “five sub-constructs” 

tradition
3
. For example, given that there is so much water in one bottle (e.g., 300 ml of 

water in a 750 mL bottle) and so much water in another (e.g., 105 mL in a quarter-litre 

bottle), which bottle is fuller? Or, which mix of water and syrup is sweeter? Or, which sea 

water has higher salinity? Or – a problem about environmental consciousness such as this 

one: 

If suburb A counts 2574 households and   
2

3
   of them compost their organic waste, while suburb B 

counts 3878 households and   
1

2
   of them compost their organic waste, which one is more 

environmentally conscious? 

In this context, fractions acquire the meaning of measures of qualities such as fullness, 

sweetness, salinity, etc., or, in general, measures of how-much-ness of one quality relative 

to another quality of the same kind. They can be thought of as single numbers on a par 

with whole numbers, which, on their part, can be conceived of as measures of qualities 

such as two-ness, three-ness, etc., of sets of objects. Then, one can think of developing a 

theory of those numbers independently of quantities they could be fractions of: defining 

their equivalence, order, operations, properties of those operations, etc. A theory of 

abstract fractions is thus obtained
4
.   

Thus, what we call measurement approach to fractions for prospective teachers, is this 

process of using the theory of fractions of quantities to go from the idea of fraction of 

something to a theory of abstract fractions. In the paper, we describe the approach in some 

detail and present some of the challenges of its implementation.  

                                                      
3 For example, Noelting’s (1978)  problem about the “orangeiness” of a juice was classified as requiring the 

“ratio” sub-construct in (Charalambous & Pitta-Pantazi, 2007).  
4 Mathematics education literature to teaching fractions in elementary school sometimes claims that their 

objective is to teach rational numbers or “rational number concepts”. But this is misleading, because the aim 

is never to teach rational numbers in the sense that this term is understood in theoretical mathematics, that is, 

as a theoretical system constructed algebraically (as the quotient field on the ring of integers) or analytically 

as a by-product of more general issues such as conceptualizing rates as numbers rather than as pairs of 

numbers (Thompson & Saldanha, 2003, pp. 8-10). This is why we prefer saying “abstract fractions” or 

“fractions as abstract numbers” to saying “rational numbers”. 
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We start, in section 2, by making explicit our theoretical perspective and the basic 

concepts underlying our approach. In section 3, we describe the methodology of our 

research. In section 4, we begin describing the measurement approach by contrasting it 

with some other approaches known in the literature. Section 5 contains more details on 

how we taught the courses. In the last section we share some reflections on our design after 

three years of experimentation.   

A caveat is in order. The aim of this paper is not to show that the measurement 

approach to fractions for teachers works; that all or most students understood fractions 

better after the treatment than before it. This is not a pre-test/post-test type of research. In 

general, the purpose of design experiments in mathematics education is not necessarily to 

determine what works or to prove that some particular approach improves students’ 

learning of a mathematical topic or area but rather “to develop a class of theories about 

both the process of learning and the means that are designed to support that learning….” 

(Cobb, diSessa, Lehrer, & Schauble, 2003, pp. 9-10).  We hope to show, using analytical 

arguments and reflections on observed future teachers’ behaviour, that the measurement 

approach to fractions makes sense. We also describe some of the difficulties that 

prospective teachers are likely to experience with the approach. Difficulties are to be 

expected and we see them as playing a positive role. Difficulties are not only inevitable – 

fractions are a complex notion and no approach is going to make them easier to 

understand, to learn and to teach – but are constitutive of learning. They must be revealed, 

understood and overcome for learning to occur.   

Theoretical Framework 

Our theoretical framework is made of 1) a Vygotskian perspective on the purposes of 

education and content development; 2) a model of theoretical thinking and, 3) a concept of 

quantitative reasoning.  

A Vygotskian Perspective on Education and Content Development 

Constructivist approaches to teaching, based on Piaget’s views of the relations between 

cognitive development and education, advocate adjustment of the mathematical content of 

teaching to the stage of the child’s development (Piaget, 1969/1990)
5
, or, more generally, 

“following the student’s lead” (Arcavi & Schoenfeld, 1992, p. 323; see also Confrey, 1990 

and Wood, 1995).  In Davydov’s curriculum, on the other hand, content is chosen, 

organized and taught based on the idea, inspired by Vygotsky’s work (Vygotsky, 1987), 

that the role of school instruction is to further the development by engaging the child in a 

process of conscious theorization of the historically shaped social practices assumed to 

stand at the source of the target knowledge to be taught (Davydov, 1991b). Children do not 

go to school to learn how to speak grammatically, or just to calculate and solve problems 

more efficiently. They go to school to become aware of what they do as they speak and 

calculate: that’s what it means to learn grammar and arithmetic.
6
 

                                                      
5 « En un mot, le problème central de l’enseignement des mathématiques est celui de l’ajustement réciproque 

des structures opératoires spontanées propres à l’intelligence et du programme ou des méthodes relatifs aux 

domaines mathématiques enseignés. » (Piaget, 1969/1990, p. 66) 
6 “The preschool child possesses all the basic grammatical and syntactic forms. He does not acquire 

fundamentally new grammatical or syntactic structures in school instruction. From this perspective, 

instruction in grammar is indeed a useless undertaking. What the child does learn in school, however, is 

conscious awareness of what he does.” (Vygotsky, 1987, p. 206) 
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Aims of the measurement approach to fractions for prospective teachers.  In our 

research, we adopted a similar view with regard to the goals of instruction in mathematics 

courses for prospective elementary teachers. We did not aim at re-teaching them a course 

on fractions for children, only better than they have been taught themselves when they 

were children. We addressed our course to adults capable of solving at least some simple 

problems about fractions of things (see explanation below) and of performing formal 

calculations on fractions without necessarily being aware of the mathematical-theoretical 

underpinnings of what they were doing. We aimed at helping them to develop this 

awareness.  

What we mean by simple problems on fractions of things are problems where 

conceptualization of the things as quantities is not necessary and performing numerical 

operations is sufficient to obtain an answer that is at least numerically correct. Here is an 

example. A questionnaire administered in the first lesson of Year I experiment revealed 

that most (27 out of 35) students – the prospective teachers – could correctly solve this 

simple problem about fractions of things: 

Mary used ¾ of a 500 mL bottle of water. Jane used ½ of a 750 mL bottle of water. Which one used 

more water? Justify your answer. 

Students mostly ignored the millilitres and obtained the answer by performing 

numerical operations such as dividing the number 500 by 4 and multiplying the result by 3. 

They considered writing down these operations in their answers as a sufficient justification 

of their conclusion that the amounts are equal. On the other hand, the next question was not 

such simple problem: conceptualizing the thing as a quantity was necessary.  The question 

was: 

Mary ate ¾ of an 8-inch pizza. Jane ate ½ of a 10-inch pizza with the same filling. Which one had 

less pizza? Justify your answer.   

Most students (all but 4 out of the 35) applied the same numerical strategy as in the 

previous  problem, dividing 8 by 4 and multiplying the result by 3, obtaining 6, then 

comparing this with 5 (10 divided by 2),  and concluding that Jane had less pizza than 

Mary.
7
 They understood the formula for taking a fraction of a quantity numerically, not 

quantitatively, as Thompson & Saldanha (2003) would say. 

 

Reflection on object sources of mathematical concepts as a basis of curriculum 

development. According to Davydov, developing an approach to teaching a mathematical 

concept should start by a reflection on the social practices whose conscious theorization 

has led, in the history of mathematics, to the development of that concept. These social 

practices, in Davydov’s and his collaborators’ papers are called the “object source of 

origin” for the mathematical concept (Davydov & Tsvetkovich, 1991) or “object content” 

of a concept (Davydov, 1991a).  

The idea of object source is similar to Brousseau’s notion of fundamental situation for 

a mathematical concept (Brousseau, 1997; Brousseau, Brousseau, & Warfield, 2014) in 

that both refer to problem situations for the solution of which the mathematical concept is a 

useful (or even optimal) tool. 

 

                                                      
7 More details about students’ responses to these problems can be found in (Sierpinska, 2016). 
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Measurement as object source for the concept of number. Both Brousseau and 

Davydov consider measurement as the source of the notion of number in general and 

fractions in particular.  Number is conceived as an answer to the question, “How many 

given units does this quantity measure?” For example, if a certain length of material 

measures 3 cubits, the answer to such question is: 3. This number 3 tells us how many 

times the length is greater than the chosen unit; the number 3 is the ratio of the length of 

the material to the unit in which it has been measured.   

This notion of number as a ratio was the basis of long-term instructional experiments in 

the first three primary grades conducted by Davydov and his collaborators in the 1960s 

(Lompscher, 1994; Fridman, 1991; Schmittau & Morris, 2004; Schmittau, 2005). Children 

were first introduced to numbers in the context of direct comparison (by juxtaposition, 

superposition) of objects relative to qualities such as length, width, height, weight, etc. 

They were taught to record the results of their comparisons using symbols such as  +, <, >. 

Next, the situations were changed to make the direct comparison of objects difficult or 

impossible; this forced the children to measure each object using sticks, pieces of string, 

and other devices and compare the measurements, not objects. The relationship between 

the quantity they were measuring and the unit of measure was represented using 

expressions such as  

“A/c = 5”, interpreted as: the unit c is contained 5 times in the quantity A.  

 

Change of unit as an object source of the concept of fraction. Number thus arises in the 

context of a multiplicative quantitative operation.  The object source of the operation of 

multiplication is considered to be the practice of change of unit in measurement (Davydov, 

1991a) and, since a fraction represents a multiplicative relationship between two quantities 

of the same kind, change of unit is also an essential element of the object source of 

fraction. If I want to measure a quantity 𝐴 with some unit 𝐵, more often than not neither 𝐵 

is contained in 𝐴 a whole number of times nor 𝐴 is contained in 𝐵 a whole number of 

times, but there is a remainder.  If there is a smaller unit 𝑢 that fits a whole number 𝑛 of 

times into 𝐴 and a whole number 𝑚 of times into 𝐵, then the ratio of 𝐴 to 𝐵 is 𝑛 to 𝑚. In 

this case, there is a convention to treat this ratio as a new kind of number, called “fraction”, 

denote it by the symbol   
𝑛

𝑚
   and say that 𝐴 measures   

𝑛

𝑚
   units B.   

 

A top-down conceptualization of fractions for children. In this approach, fractions are 

defined as those numbers that can be represented as ratios of whole numbers. It is a top-

down conceptualization of fractions: the idea of number in general is introduced first; 

fraction is then introduced as a special kind of number. In Davydov’s curriculum, the 

notion of number is built so that children do not associate it only with counting discrete 

sets and therefore with whole numbers. For those children, mathematics begins with 

measuring all kinds of objects with different kinds of units.  

 

A bottom-up conceptualization of fractions for prospective teachers. Our students in 

the experiment – adults preparing to become elementary teachers – had not followed 

Davydov’s curriculum as children, however. They were brought up in a tradition where 

“mathematics begins with counting” (Parker & Baldridge, 2003, p. 1). In this tradition, 

building the idea of fraction starts from counting as well: counting the slices of pizza eaten 

and the slices into which the whole pizza was cut and writing these two whole numbers 
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one on top of the other. Other activities and problems are used to help children conceive of 

this pair of numbers as a number in its own right. This is a bottom-up approach.  

We tried to acquaint our students with Davydov’s top-down approach in the first year 

(Year I) of the experiment, but, as described in (Sierpinska, 2016), we were not satisfied 

with the conceptions of fractions they displayed by the end of the course.  The students 

extended their repertoires of problems about fractions by problems about fractions of 

quantities measured in standard units but the material (pieces of pizza), the formal 

(calculus on expressions a/b) and quantitative (fractions of quantities) conceptions of 

fractions were not integrated in the problems they created or chose for the Problem Book 

they had to write as the final assignment in the course (Sierpinska, 2016); they were treated 

in separate problems.   

Reflecting on the possible reasons of such outcome, our first impulse was to blame the 

foreignness of the top-down approach for the students. But then we saw another, perhaps 

more important reason. The approach passes too quickly from measuring quantities to 

abstract numbers, from the quantities A and c, to their ratio A/c, bypassing and leaving 

unaddressed the students’ basic fraction-of-something conception of fraction.  This visual 

conception is not given a chance to evolve into a more theoretical concept that could be 

conceptually linked with the formal conception of fraction. As a result, the idea of fraction-

of-something stays in its primitive, intuitive state and functions as an obstacle to the 

construction of a systemically connected knowledge about fractions. This realization led us 

to the idea of delaying the passage from measurement of quantities to abstract numbers by 

a substantial period of time devoted to working on the theorization of the idea of fraction 

of something in the form of the theory of fractions of quantities. This version of the 

measurement approach was developed in the summer and fall after the Year I experiment 

and tried for the first time in the Year II experiment and then, after slight modifications, in 

Year III. 

Our design of the bottom-up measurement approach to teaching fractions to 

prospective elementary teachers developed together with the construction of a theoretical 

system: a theory of fractions of quantities.  We envisioned elementary teachers’ 

“mathematical horizon” (Ball & Bass, 2009) as a vertically structured system
8
 where, in 

the first stage, the arithmetic of fractions of quantities builds on the arithmetic of whole 

numbers and whole numbers of quantities
9
, and, in the second stage, the arithmetic of 

abstract fractions builds on the arithmetic of fractions of quantities. Fraction of quantity, 

the central concept of our measurement approach, is the missing link between the 

arithmetic of whole numbers and whole numbers of units, which is derived rather 

spontaneously from the concrete reality, and the arithmetic of abstract fractions, which is 

not nearly as natural to learn. The passage, we argue, requires theoretical thinking and 

quantitative reasoning. We explain below. 

                                                      
8 We allude here to Bernstein’s distinction between vertical and horizontal discourses (Bernstein, 1999); see 

also (Lerman, 2010).  
9 We are referring here to operations on whole numbers that produce whole numbers (e.g., 2 + 3, 3 – 2, 2 × 3, 

6 ÷ 2), and to operations of addition and subtraction of whole numbers of units (e.g., 2 kg + 3 kg), 

multiplication of whole numbers of units by whole numbers (e.g., 2 × 3 kg) and division of whole numbers 

of units by whole numbers if producing whole numbers of units (e.g., 6 kg ÷ 2). 
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Theoretical Thinking 

Our aim in the courses, in accordance with the Vygotskian perspective, and Davydov 

& Tsvetkovich’s views on the purposes of teaching fractions, was to bring future teachers 

to think theoretically about fractions (Davydov & Tsvetkovich, 1991, p. 107). 

The term theoretical thinking is used in the sense of the model described in our 

previous research (Sierpinska, Bobos, & Pruncut, 2011).  We summarize it briefly here.  

Theoretical thinking is defined by three features: it is thinking that is reflective, systemic 

and analytic.  There is evidence of reflective thinking in a student if he or she reflects back 

on their solutions, checking if the answer makes sense or if there is maybe a simpler 

solution, or if the problem is related to a previous one, etc.  Systemic thinking refers to 

thinking within a conceptual system, where (a) meanings are established by definitions, 

rather than only by metaphors, images, or usage in a context (systemic-definitional 

thinking); (b) the validity of statements is derived from knowledge already established 

within the system and not by ad-hoc arguments from outside the system (systemic-based 

on proofs); and (c) there is an awareness that knowledge constructed this way is 

hypothetical rather than true in some absolute sense; all claims are made on some 

assumptions and it is important to be aware of making these assumptions, and also to 

question them: are they all necessary?; what if they were replaced by other assumptions? 

(systemic-hypothetical). Analytic thinking refers to being attentive (a) to notational 

conventions, and using them consistently and, (b) to logical relations among the different 

parts of statements or arguments. Accordingly, in Years II and III, we expected the future 

teachers to prove such statements as, e.g., “A quantity which is  
𝑎

𝑏
  of  

𝑐

𝑑
  of a quantity  𝐴  is 

the fraction  
𝑎×𝑏

𝑐×𝑑
  of the quantity 𝐴”, which is a theorem in the theory of fractions of 

quantities. 

This proving task would not be given to students as such (“prove that…”), but would 

be embedded in a problem of representing a quantity given as a concrete fraction of a 

concrete fraction of some quantity as a single fraction of that given quantity; for example, 

The quantity   
3

4
  of  

5

7
  of 1 𝑘𝑔   is what fraction of  1 𝑘𝑔 ? 

The numbers would be chosen so as not to make the answer obvious. Moreover, the 

denominator of the first fraction and the numerator of the second are relatively prime (have 

no common factors beside 1), so the relations between the measures of the quantities 

involved cannot be simplified. These choices make it easier for students to see the general 

in the particular, and serve as the ground for a generic example proof (Yopp, Ely, & 

Johnson-Leung, 2015) of the target theorem. Students would be asked to reason out the 

answer based on the definition of fraction of a quantity, and not only by illustrating it using 

diagrams or manipulatives such as strips of paper. Diagrams could be drawn to visualize 

the relations in the situation, and get a rough estimate of the quantity, but they were 

deemed insufficient as a justification of their answer. Representing quantities as line 

segments (Figure 1) was often used by the teacher in outlining the relationships between 

quantities and students adopted this representation as well in thinking about problems.   
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Figure 1. Diagram representing the problem, 3/4 of 5/7 of 1 kg is what fraction of the kilo? 

Based on a rough diagram such as the one in Figure 1, one can guess that three-

quarters of five-sevenths of a kilo is a little bit more than half a kilo. But a more precise 

answer requires analytic work. In the figure, some of this analytic work has already been 

done: the quantity  
3

4
   of   

5

7
  of  1 kg  has been broken down into three quantities:   𝐴 =

 1 𝑘𝑔, 

𝐵 =
5

7
 of 𝐴, and 𝐶 =  

3

4
 of 𝐵.  Also, the definition of fraction of a quantity (given in the 

Introduction to this paper) has been used to claim that for some unit 𝑢,  𝐴  measures 7 units  

𝑢 and  𝐵  measures 5 units  𝑢, and that for some 𝑤, 𝐵  measures 4 units 𝑤 and  𝐶  measures  

3  units 𝑤. The question is, 𝐶  is what fraction of  𝐴? This is the main part of the reasoning 

and it is not shown in the diagram. It would go like this: quantities 𝐶 and  𝐴  cannot be 

compared directly because they are expressed in different units:  𝐶 is in 𝑤’s and 𝐴 is in 

𝑢’s. A change of unit is necessary. This change of unit must respect the equality 5 × 𝑢 =
4 × 𝑤, since both are measures of  𝐵. If we take a smaller unit 𝑣 such that, for example, 

𝑤 = 5 × 𝑣  (we divide the unit 𝑤  into 5 smaller units), then  5 × 𝑢 = 4 × 5 × 𝑣; so, by 

proportionality, 𝑢 = 4 × 𝑣. Converting  𝐴  and  𝐶  into units  𝑣,  we get 𝐴 = 7 × 4 × 𝑣  

and   𝐶 = 3 × 5 × 𝑣. Using the definition of the fraction of a quantity again, we conclude 

that  𝐶  is the fraction  
3×5

7×4
   of  𝐴.  Students would be tempted to replace 7 × 4  by  28  and  

3 × 5  by 15, but we would advise them to delay doing this until after they had the time to 

see the pattern and generalize their reasoning.  

 Reasoning within a system may seem like narrow-mindedness, empty formalism, and 

other such things, strongly criticized in post-modern mathematics education.  We argue, 

however, that forcing oneself to think and reason within a conceptual system is opening 

one’s mind to different points of view and considering them in a non-judgmental way, 

without taking sides.  It prepares us for the effort of understanding how other people – for 

example, children – think.  We may be more willing to try to identify their assumptions, 

the things they take for granted, the rules they use to draw conclusions, and, on that basis, 

imagine what they expect and what they might do in various situations.   

Thinking theoretically about fractions of quantities might therefore be very useful in 

preparing to teach this concept to elementary school children.  First of all, it is not far from 

thinking the way a pre-fractions elementary school child might think.  In the bottom-up 

version of the measurement approach, as we started teaching it from Year II, the concept of 

fraction of a quantity is built from only such mathematical knowledge that a pre-fractions 
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elementary school child (who has not been following Davydov’s curriculum) is likely to be 

familiar with: whole numbers used as multipliers (words and symbols responding to the 

question “how many?”) and quantities measured in whole numbers of standard units (e.g., 

3 kg, 24 cents).  An adult who suspends his or her knowledge of rational numbers, algebra 

and good or bad procedural habits of dealing with fractions, and forces him or herself to 

reason based on this knowledge alone and uses only those concepts about fractions of 

quantities that have already been built, is learning to experience learning mathematics form 

the point of view of a pre-fractions elementary school child.   

Theoretical thinking also includes reflective thinking – not just solving a problem for 

the sake of getting the answer expected by the teacher and obtaining a good grade but 

reflecting back on one’s solution, generalizing it, seeking alternative solutions, extending 

the problem, modifying it, considering the consequences of adopting a different set of 

assumptions, etc.  All these activities characterize a reflective teacher as much as a 

reflective researcher in theoretical mathematics and are most desirable in the education of 

future elementary teachers.   

Teachers must also nurture their linguistic and logical sensitivities and be careful in 

representing problems, concepts, and numerical and quantitative relations so as to avoid 

notational ambiguities and logical inconsistencies – these are sensitivities associated with 

the analytical thinking dimension of theoretical thinking.  

Thus the Measurement Approach has a potential to prepare future teachers to teaching 

fractions by allowing them to re-learn fractions on the basis of only such knowledge as a 

pre-fractions child would possess.  But they must be open to this experience and 

understand its benefits.  Achieving such openness on the part of undergraduate students 

studying to become teachers of young children is one of the challenges of this approach.  

Quantitative Reasoning 

The theory we constructed is a theory of fractions of quantities. Its objects are 

quantities and quantitative relationships; the focus is not on the numerical values of the 

quantities or on operations on these numbers but on the quantities as conceptual entities in 

and of themselves and operations on the quantities.  Reasoning within this theory requires, 

therefore, quantitative reasoning. We refer here to the notions of quantity and quantitative 

reasoning as proposed by P. Thompson:  

Quantities are conceptual entities. They exist in people’s conceptions of situations. A person is 

thinking of a quantity when he or she conceives a quality of an object in such a way that this 

conception entails the quality’s measurability. A quantity is schematic: It is composed of an object, 

a quality of the object, an appropriate unit or dimension, and a process by which to assign a 

numerical value to the quality. (Thompson, 1994, p. 184) 

We understand quantitative reasoning as reasoning which involves performing 

connected sequences of quantitative operations, i.e., “mental operations by which one 

conceives a new quantity in relation to one or more already-conceived quantities” 

(Thompson, 1994, p. 185). For example, taking a fraction of a quantity is a quantitative 

operation by which a new quantity is conceived.  Changing the unit for measuring a 

quantity is a quantitative operation. Consciously using these operations to justify why 

three-quarters of two-thirds of a litre is one-half of a litre is making a quantitative 

reasoning.  In this reasoning, the concrete numerical values of the fractions are not as 

important as the structure of the relationships among the quantities at play: one quantity is 

a fraction of another quantity which is itself a fraction of a third quantity, and we want to 
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know what fraction of that third quantity is the first one. As Thompson was saying in 

another paper:  

Quantitative reasoning is the analysis of a situation into a quantitative structure – a network of 

quantities and quantitative relationships…. A prominent characteristic of reasoning quantitatively is 

that numbers and numeric relationships are of secondary importance, and do not enter into the 

primary analysis of a situation. What is important is relationships among quantities. (Thompson, 

1993, p. 165) 

These features of quantitative reasoning support the processes of generalization, 

leading to formulating the theorems in the theory of fractions of quantities. 

Methodology 

As any design experiment, the research evolved through, first, a phase of reflection on 

the sources of meaning of the target mathematical content (the concept of fractions 

appropriate for future elementary school teachers) in interaction with preliminary trials (in 

winter 2013, Year I). Based on this initial experience, a complete 8-weeks course based on 

the Measurement Approach was designed (summer-fall 2013) and implemented in the 

winter of 2014 (Year II).  After a reflective analysis on the results of this first 

implementation, a revised version of the design was drawn and implemented in the winter 

2015 class of the course (Year III).  

An account of our initial conceptualization of the measurement approach to fractions 

and Year I trial can be found in (Sierpinska, 2016).  In the present paper, we speak mainly 

about the revised versions of the measurement approach tried in Years II and III.  We focus 

on the theoretical conceptualization of the approach, but we also give some information 

about the prospective teachers’ responses to the approach, because these responses played 

an important role in the process of the conceptualization. A response mattered for us, 

whether it was widespread among the students or exhibited by only a few, if it made us 

realize an unsuspected or unintended meaning of what we were saying in class or writing 

in the formulations of problems. The research was not quantitative.   

In this section, we first describe, in general terms, the design experiment methodology 

as we applied it in our research, and then give more details about our research procedures. 

Design Experiment 

Design experiment is an ambiguous term since it refers to both a product of practicing 

research in mathematics education as a design science (Wittman, 1995), and to a research 

methodology that outlines the process of conceiving and evaluating educational 

interventions aimed at developing a particular product, such as a curriculum, a sequence of 

lessons, or a piece of software.  Both meanings, as product and method, cohabit in such 

design-based research approaches in mathematics education as didactic engineering 

(Artigue, 1992; 2009; 2014) or design experiment (Cobb, diSessa, Lehrer, & Schauble, 

2003; Cobb, Zhao, & Dean, 2009).  The methodology of our research is closer to Cobb et 

al.’s understanding of design experiment than to didactic engineering: we did not use the 

theory of didactic situations as our theoretical framework. However, in our re-thinking of 

the mathematical content of the planned teaching – a phase of research present in both 

didactic engineering and design experiment – we paid special attention to object sources of 

the concept of fraction. As already mentioned before, object sources – a Davydovian 

concept – is close to the notion of fundamental situation, characteristic of didactic 

engineering.  
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Davydov and his collaborators’ papers do not dwell on the methodology of the research 

they were conducting.  But their research can be classified as instructional design 

experimentation, with its usual cycle of several iterations of design, implementation, 

reflection and revision.  Their papers on the teaching of multiplication, fractions and other 

mathematical concepts are usually made of four parts: presentation of the common 

(“traditional”) approach to teaching a concept; critical assessment of this approach; 

presentation and justification of a new approach, and a detailed description of a model 

teaching of the concept using the new approach.  In the last part, the teaching is presented 

as successful; it is not an account of a trial that has had its shortcomings and is in need of 

improvement.  It is a finished product.  These descriptions may appear somewhat idealized, 

cartoonish, with children not behaving as we know children to behave, but they are not 

meant to represent a concrete real class of children.  They only illustrate the details of the 

approach; the teacher’s essential interventions are highlighted and explained.  The critical 

assessment of common approaches and justification of the proposed approach are built 

from the perspective of the assumed object sources of the meaning of the mathematical 

concept to be taught and learned. 

In this paper, we also start by presenting what we assume to be the object sources of 

the concept of fraction of a quantity – the basic concept in our approach – and describe 

how the development of the content of the course is built on these object sources.  But 

rather than presenting a model realization of the design, we outline the main challenges in 

its realization
10

. It is in these obstacles, in particular, that we claim the generalizability of 

our results – they are the same as the “concrete universals” one seeks to find in linguistics 

research (Erickson, 1986).  

Sources of Data 

The experiment was conducted in a regular, 13-week long undergraduate course in a 

program leading to a teaching certificate at the elementary level. While the program was 

preparing teachers of all subjects (not only mathematics) at this level, the course in which 

the experiment took place was “Teaching Mathematics II”. In Teaching Mathematics I, the 

focus was on whole numbers; Teaching Mathematics II was on fractions and geometry. 

Admission into the program was based on candidates’ average grade in secondary school 

and a two-year college; more than a passing grade in a basic level high school mathematics 

course or prior teaching experience were not required. Most students were quite young (20-

25), but in each year there were a few people in the 30-40 age range. There were 38 

students enrolled in the course in Year II and 34 in Year III. Most were female; the number 

of male students did not exceed 4 in each year.   

Each week the class would meet two times: one 2-hour class where new material was 

introduced and a 1¼-hour lab, devoted to problem solving in small groups and discussing 

problematic solutions or interpretations of homework assignments.   

The data collected in this research consist of:  

Documents produced by the researchers: course outlines, printed Course Notes (used as 

texts for students); instructor’s notes from classes, labs, office hours and emailed 

                                                      
10 We do not present a model realization not because we don’t have it yet, but because we don’t think such 

one universal ideal model exists. Each realization depends on the personalities, cognitive propensities and 

academic pasts of both the teacher and the students. Much depends on the questions students ask in the class 

and the teacher’s ability to use them as opportunities to clarify the concepts.   
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exchanges with students; the field observer’s notes (Year II only); Power Point 

lecture presentations. 

Copies of all students’ written work for the courses: homework assignments (10-12 in 

each year) and examinations (Midterm and Final).   

Ways of Analysing the Data 

In the descriptions of students’ solutions we will occasionally use simple descriptive 

statistics but our analyses of the data are essentially conceptual and interpretive, and we 

make no quantitative claims. We are interested in the nature of students’ difficulties, not in 

their distribution in the population. As Cobb, McClain and Gravemeijer (2003, p. 4) 

contend, rather than implying homogeneity of all students’ learning, we make “empirically 

grounded claims about the conditions for the possibility of all students’ learning”. 

Any general statements made here are, however, not the result of analysing isolated 

pieces of data, but rather of systematic reading of the entire data corpus and using Glaser 

and Strauss’s method of producing categories grounded in the data through an iterative 

process of conjecturing, refining, or refuting emergent rubrics (Glaser & Strauss, 1967), 

using data triangulation.  But these categories were not built on the data alone; we used any 

concepts and categories we were used to thinking with, a process which is included in the 

more recent characterizations of interpretive methodology of research (Erickson, 1986; 

Eisenhart, 2009). 

Students’ solutions to problems given as homework assignments, class tests, or 

invented by themselves were first analysed one by one. We first tried to understand how 

each student interpreted the problem – what problem he or she was, in fact, solving – and 

how he or she could have been reasoning, based on the written traces of said reasoning. We 

transcribed (or inserted screen clippings of a scan of the student’s work) in one column of a 

two-column table, and wrote our hypotheses as to what the student was thinking in the 

second column.  

For example, in the Midterm test given in Year III of the experiment, one of the 

questions was: 

(Year III, Midterm, Version A, Question 2a) A jar can be filled to capacity with either 6 tall glasses 

or 9 short glasses of water.  What fraction of the capacity of the tall glass is the capacity of the short 

glass?    Derive your answer from one of the definitions of a fraction of a quantity. 

Some explanation of the context is in order here.  In Year III of the experiment, beside 

the common-unit definition of fraction of quantity mentioned before (a theorization of the 

idea of fraction-of-something), another characterization of fraction of quantity was added, 

based on the idea of commensurability and derived from the social practice of barter 

transactions (more about it later). It was also called a definition. So, there were two 

definitions of a fraction of a quantity in use. One, labelled DoF-I, was saying that quantity 

𝐴 is the fraction   
𝑎

𝑏
   of the quantity 𝐵 if 𝑏 × 𝐴 = 𝑎 × 𝐵  (the “barter definition”).  The 

other, labeled DoF-II, said that the quantity 𝐴 is the fraction   
𝑎

𝑏
   of quantity 𝐵 if there is a 

common unit 𝑢 such that 𝐴 measures 𝑎  units 𝑢  and 𝐵 measures 𝑏 units 𝑢. In both 

definitions it is assumed that 𝑎   and  𝑏  are whole numbers and that the quantity 𝐵  is non-

zero.   

One student produced the solution in Figure 2.  
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Figure 2. A student’s solution to Question 2a of the Midterm exam in Year III of the experiment. 

This solution was transcribed and divided into meaningful elements (“semantic units”) 

or steps of the solution. Each element was then put into one row of the left column of a 

two-column table (Table 1). In the right column of the row we put our interpretation of this 

element of the solution.  The bottom row of the table contained a summary evaluation of 

the solution regarding evidence of quantitative reasoning and theoretical thinking. We then 

discussed our interpretations and agreed on a common interpretation of the student’s 

solution.  

As we were thus analysing the consecutive students’ work, we were noticing 

commonalities and differences, and those led to grouping students’ interpretations of the 

problems and ways of reasoning and thinking into larger categories.  Eventually, we had a 

set of aspects that would characterize students’ solutions to a given problem in the form of 

questions to which the answer could be “yes” or “no”.  These questions were then put as 

titles of columns in a spreadsheet file and students’ names were put in the rows. Answer 

“yes” for a given question would be coded 1 and “no” – 0, which facilitated counting the 

numbers of students displaying each particular way of thinking about the problem.   
 

Table 1. 

Analysis of student SIII.1's solution to Question 2a of the Midterm exam in Year III of the 

experiment. 

Transcript: Year III, Midterm version A, 
Q2a, SIII.1 

Comments 

C = capacity 

SG = short glass,  TG = tall glass 

Identifies the main objects in the problem – 
tall glass and short glass – and the quality of 
these objects – capacity – on which the 
problem is focused. Assigns abbreviations 
to the objects and the quality.  

DoF-I   A is n/m of B 

m × A = n × B 

Quotes DoF-I without logical connectors. 
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[Question is:] C of SG = ?/? of C of TG Identifies the two quantities to compare: 
capacity of the short glass and capacity of 
the tall glass. Interprets the question as 
intended: capacity of the short glass is what 
fraction of the capacity of the tall glass? 

SG = 9     TG = 6 Uses the abbreviations “SG” and “TG” in a 
different sense now: number of short 
glasses and number of tall glasses, resp.  

9 x SG = 6 x TG Re-uses the abbreviations “SG” and “TG” in 
yet a different sense:  capacity of the short 
glass and capacity of the tall glass, resp. 
Writes the relation between the two 
capacities, as assumed in the problem. 

Therefore C of SG = 6/9 of C of TG Applies DoF-I to obtain the final answer. 
Returns to the initial meanings of the 
abbreviations.  

Summary. Problem interpreted as intended.  Evidence of quantitative reasoning. 
Theoretical thinking: evidence of systemic-definitional thinking (applies a definition 
correctly); analytical sensitivity requires development: omits logical connectives in 
quoting a definition; uses letters more as shorthand than as variables.   

 

Measurement Approach to Fractions in the Context of Other Approaches 

In this section, we present certain aspects of our approach to fractions by contrasting it 

with some other approaches, known in the literature. 

Quantitative Approaches to Fractions  

In Niemi’s (1996) review of literature on the teaching and learning of fractions some 

papers are grouped together as representing approaches focused on “quantitative models” 

of fractions. This group includes the classic “Psychology of number” of MacLellan & 

Dewey (1900), and Davydov & Tsvetkovich’s exposition of their measurement approach 

to fractions (1991) , which are indeed very similar in their conceptualization of number as 

ratio arising from measurement and fraction as an abstraction from the context of fractions 

of measured quantities. Ohlsson’s analysis of “mathematical and applicational meanings of 

fractions” (Ohlsson, 1988) is cited in this group as proposing to conceptualize fractions’ 

applicational meaning similarly to McLellan & Dewey’s definition of fraction
11

. Let us 

quote one of the formulations of McLellan & Dewey’s definition from the original: 

In its primary conception a fraction may be considered as a number in which the unit of measure is 

expressly defined. In the quantities 4 dimes, 5 inches, 9 ounces, the units of measure are not 

explicitly defined; their value is, however, implied or else there is not a definite conception of the 

                                                      
11 Ohlsson (1988) defines the mathematical meaning of fractions as an ordered triple (𝑥, 𝑦, 𝑟), where 𝑥 and 𝑦 

are integers, 𝑦 is non-zero and 𝑟 is a number which, multiplied by 𝑦, gives 𝑥.  
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quantity. In 8
4

10
, 

5

12
 foot, 

9

16
 pound, the units of measure are explicitly defined; and each of these 

expressions denotes four things: 

1. The unity or standard of reference from which the actual unit of measure is derived. 

2. How this unit is derived from the unity of reference. 

3. The absolute number of these derived units in the quantity. 

4. This number is the ratio of the given quantity to the unity of reference.   

For example, in 
9

16
 pound, the unity of reference is one pound; it is divided into 16 equal parts to 

give the direct measuring unit; the number of these units in the given quantity is 9; the ratio of the 

given quantity to the reference unity is 
9

16
. (McLellan & Dewey, 1900, pp. 243-4) 

The conditions 1, 2 and 3 of the above definition define a fraction of a quantity in a similar 

way we do it in our common unit definition ( 

Figure 3). In the bottom-up version of our measurement approach, the 4
th

 condition – 

abstraction of the fraction as an abstract number – is purposefully delayed until later in the 

course.  

 

 

Figure 3. McLellan and Dewey's definition of fraction contains  

a definition of the expression “quantity A is such and such fraction of quantity B”.   

Niemi seems to suggest that papers written from the perspective of the subconstructs 

model of fractions (Kieren, 1976; 1992; 1993; Behr, Lesh, Post, & Silver, 1983; Behr, 

Harel, Post, & Lesh, 1993), and focused on the Measure subconstruct qualify as promoting 

a quantitative approach to fractions. The Measure subconstruct is often associated with 

problems consisting in identifying fractions on a number line (Bright, Behr, Post, & 

Wachsmuth, 1988). But such problems do not feature prominently in our measurement 
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approach, despite shared terminology. There is more on the differences between our 

conceptualization of fractions and the subconstructs model in section 4.4.  

Conceptual Schemes at Play in Reasoning about Fractions 

There have been efforts to conceptualize and/or experiment with consistently 

“quantitative” or “measurement” approaches to fractions beside those of Davydov’s group. 

On the North-American scene, P. Thompson has long criticized the prevailing approaches 

in dealing with multiplicative relationships in mathematics education literature and 

teaching practice and advocated a more conscious and consistent distinction between 

numerical and  quantitative mental operations in reasoning (Thompson, 1993; 1994; 

Thompson & Saldanha, 2003).   

When Thompson and Saldanha set to analyse “what it means to understand fractions 

well” (2003, p. 95), they did so in terms not of their sources in historically developed 

forms of human activity or of problem-situations for which fractions are an optimal 

solution, but in terms of conceptual schemes (Vergnaud, 1994) that a cognitive subject 

must develop in order to engage in coherent reasoning about problems involving fractions. 

The results of their analyses, expectedly, do overlap with Davydov’s in identifying the 

essential mental operations.  For example, their description of the “measurement scheme” 

encompasses thinking of a measure of a quantity as the ratio of the quantity to the unit in 

which it has been measured and being aware that change of unit does not change the 

magnitude of a quantity.  The measurement scheme entails understanding that,  

… if  𝑚  is the measure of quantity 𝐵  in units of quantity  𝐴 (i.e. 𝐵  is 𝑚 times as large as  𝐴), then 

𝑛𝑚 is the measure of quantity 𝐵 in units of 1/𝑛 th  of 𝐴.  Conversely, if  𝑚  is the measure of 𝐵 in 

units of  𝐴  then 𝑚/𝑛 is the measure of  𝐵  in units of 𝑛𝐴.” (Thompson & Saldanha, 2003, p. 101)  

Thus, the operation of change of unit – the object source of multiplication and therefore 

also of fractions for Davydov – is essential also in “conceptualizing reciprocal 

relationships of relative size” (p. 107) which, for Thompson and Saldanha, is the 

foundation of fraction schemes. 

As mentioned before, in our approach to teaching fractions to prospective teachers, we 

chose to build a connection between the visual and the formal conception of fraction based 

on a theory of fractions of quantities. This theory starts from a definition of the phrase 

“quantity  𝐴  is the fraction 
𝑎

𝑏
 of quantity 𝐵”. Thompson & Saldanha argue against using 

“of” in such phrases and propose to replace it by “as large as”; e.g., “A is 6/5 as large as B” 

(p. 107).   Their argument is that “of” may suggest that 𝐴 is a part of 𝐵 so statements such 

as “A is 6/5 of B”, where the numerator is larger than the denominator make no sense for 

students who think of fraction primarily as a part of a whole. They admit, however, that 

statements “A  is  a/b  of  B” are interpreted correctly by those who conceive  of 𝐴 and 𝐵 

as “separate amounts” (p. 107).   

If we chose not to take their advice, it is because the phrase containing “of” was 

intended to provide a quantitative theorization of the students’ intuitive notion of fraction 

of something and it was sufficiently close to phrases they would spontaneously use when 

connecting their intuitive conception and the proposed definition. We did, however, take 

note of the fact that the part-of-a-whole conception of fraction is very strong. To counter 

the interpretation against which Thompson & Saldanha are warning in their paper, we 

devoted much attention to the distinction between objects and quantities in all activities 

throughout the course. In one of the first activities in the course, an apple would be brought 
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to class, just like in the most traditional approaches to fractions (Colburn, 1884). But we 

did not just cut the apple in two more or less equal parts and expect the students to say that 

each part is “a half” of the whole apple. The apple was weighed on a kitchen scale, and its 

volume was measured by immersing the apple in a measuring cup filled with enough 

water. A single object – an apple – but two qualities, weight and volume, and two 

quantities, the measure of the weight in grams and the measure of the volume in millilitres. 

The apple was then cut in two parts. The parts were again weighed and their volumes were 

measured. Then we asked questions such as, the weight (volume) of this part is what 

fraction of the weight (volume) of the whole apple? Then the answers were not the pretty 

fraction  
1

2
. The weight of a part of the apple was found, for example, to be  

90

165
  of the 

weight of the whole apple. The fraction was obtained directly from the measures of the two 

quantities in grams. When students suggested to reduce the fraction to  
18

33
 , our response 

was, yes, but what does this reduction mean in terms of the measures of the two quantities? 

The part of the apple measures 18 units; the whole apple measures 33 units; what are those 

units? The students were led to see reduction of fractions as a result of the quantitative 

operation of change of unit.  

Brousseau’s Measurement Approach to Fractions 

In the 1970s, in France, Guy Brousseau conducted long term design-based research on 

teaching fractions in elementary school (not in teacher education) using measurement 

situations.  This research was first reported by one of Brousseau’s doctoral students 

(Ratsimba-Rajohn, 1982), in French.  A detailed account of this research is now available 

in English (Brousseau, Brousseau, & Warfield, 2014).  In this research, the design of 

didactic situations for teaching fractions was based on a thorough epistemological study of 

the notion of fraction, resulting in a theoretical model called “a fundamental situation” for 

fractions, that is, a set of characteristics of problem situations in the solution of which 

fractions appear as a useful, if not optimal tool.  As mentioned before, there is a definite 

kinship between the notion of “fundamental situation” in Brousseau’s Theory of Situations 

(Brousseau, 1997) and Davydov’s notion of “object source” of a mathematical concept. 

Ratsimba-Rajohn (1982) derived the meaning of fraction of a quantity from two 

practices. One is the practice of obtaining a more precise measurement by division of a unit 

into smaller units (fractionnement de l’unité, p. 74), which corresponds to our common unit 

definition. The other (commensuration, p. 74-5) consists in evaluating the relative values of 

two quantities by equating their multiples. Ratsimba-Rajohn gives two examples of 

situations where this practice may occur: 1) evaluating the weight of one sheet of paper 

knowing that 540 such sheets weigh 64 grams; 2) reasoning in the context of barter 

exchanges, for example, evaluating the relative market values of some kind of fabric and of 

tea knowing that 20 meters of the fabric can be exchanged for 10 pounds of tea
12

.  This 

practice leads to defining the meaning of the phrase “quantity 𝐴 is the fraction   
𝑎

𝑏
   of 

quantity 𝐵” by the condition 𝑏 ×  𝐴 =  𝑎 ×  𝐵. We will refer to this definition as barter 

definition, as this name is shorter than “commensuration definition”.  

The research conducted by Ratsimba-Rajohn aimed at verifying the hypothesis that 

children are more likely to use strategies aligned with the barter definition in situations of 

measuring one quantity with another where a small multiple of the one can be easily found 

                                                      
12 Ratsimba-Rajohn cites Karl Marx’ The Capital for this particular example of barter transaction.  
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to be equal to a small multiple of the other, but will move to finding a common unit for the 

two quantities when those multiples would have to be very big for the quantities to be 

equal to each other. The research did not clearly confirm the hypothesis; children were 

often stuck with strategies aligned with the barter definition. Even after discovering the 

common unit strategy, children continued using the barter strategy.  Sometimes they used 

the latter strategy to justify results obtained with the former (Ratsimba-Rajohn, 1982, p. 

109). 

Thus, it was the barter definition of fraction of a quantity that was at the basis of 

Brousseau’s “thickness of a sheet of paper” situation by means of which children were to 

be first introduced to fractions (Brousseau, Brousseau, & Warfield, 2014). For children, the 

barter meaning was to be constructed as an optimal measurement strategy in situations of 

measuring something so thin that previously known techniques of direct measurement 

could not be applied. The problem situation designed and experimented with children 

involved measuring and comparing the thicknesses of various types of paper: the goal was 

to code the thickness by a pair of whole numbers (e.g., 20 sheets; 3 mm) and learn to know 

when these pairs represent the same thickness and how to tell if one such pair represents a 

thickness greater than another.  Thus, from the outset, the abstract notion of fraction was 

aimed at.    

As mentioned before, our experience in Year I advised us against passing directly from 

measurement activities to abstract fractions. In Years II and III, we decided to precede the 

abstraction of fraction as a number by a long period of working with fractions of quantities. 

This is one difference between Brousseau’s approach and ours.  Another difference is the 

relation between the two meanings of fraction of a quantity.  In Year II of the experiment, 

we used only the common unit meaning in defining the notion of fraction of a quantity.  In 

Year III, both the barter and the common unit definitions were introduced; the former was 

labeled DoF-I, the latter – DoF-II. We treated them as equivalent characterizations of the 

concept of fraction of a quantity; they had, for us, the same epistemological value as tools 

of reasoning. It can be proved that if 𝐴 is  
𝑎

𝑏
  of 𝐵 in the sense of DoF-I, then 𝐴 is also   

𝑎

𝑏
   

of 𝐵 in the sense of DoF-II, and vice versa. In the course, students convinced themselves of 

this equivalence on generic examples (Yopp, Ely, & Johnson-Leung, 2015). In 

Brousseau’s design, however, the barter and common unit meanings were treated as 

measurement strategies, not definitions, and it was assumed that the barter strategy was the 

more primitive one and special didactic situations were to be designed to help children 

move to the common unit strategy.  

The Five-subconstructs Model of Fractions 

By far the most widely known and applied conceptualization of fractions is the “five-

constructs model” (Kieren, 1976; 1993; Behr, Lesh, Post, & Silver, 1983; Behr, Harel, 

Post, & Lesh, 1993; Niemi, 1996; Lamon, 2001; 2012; Charalambous & Pitta-Pantazi, 

2007; Wong & Evans, 2008; Pantziara & Philippou, 2012). The measurement approach 

that we developed in our research takes into account all five aspects, but the classification 

of these aspects into five distinct subconstructs is not justified in the approach. In the 

research literature, each of the subconstructs is often associated with being able to answer 

certain questions (Charalambous & Pitta-Pantazi, 2007). For example, the Measure 

subconstruct is associated with questions about representation of fractions on a number line 

and finding fractions between two given ones. From the point of view of our approach, 

questions associated with a given construct would usually not be considered as belonging 
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to the same type: our taxonomy of problems relies rather on the quantitative operation at 

stake in a given problem. Moreover, even the formulation of the problem would be 

different.  

In our approach, especially in the bottom-up version, we emphasize the distinction 

between abstract fractions and fractions of quantities. Fractions of quantities are quantities. 

For example, 
3

4
 𝐿 – or 

3

4
  𝑜𝑓 1 𝐿  –   is a quantity: it is the volume measuring three units 

such that four of these units make one litre (in this case the unit is 250 𝑚𝐿). Fractions as 

such, on the other hand, are abstract numbers; 
3

4
   is the name of a number that multiplied 

by 4 gives 3.  But in problems associated with the subconstructs model, a symbol of the 

form   
𝑎

𝑏
   may mean a quantity or an abstract number depending on the context.  In fact, 

being able to guess which meaning is intended in a given problem, and, in case a quantity 

is intended, guessing what is the referent quantity, are often considered evidence of 

understanding fractions (Charalambous & Pitta-Pantazi, 2007; Wong & Evans, 2008). 

In our approach, the kind of quantity at play (whether it be number of objects, length, 

area, weight, volume, etc.) is explicit or clearly implied. There are no “wholes” and 

“parts”; there are two measured quantities. We would not consider problems such as the 

one in Figure 4 as appropriate because the reference quantity is not specified and the 

formulation gives the learner permission to identify an abstract number (
2

3
) with an object 

(e.g., a partly shaded diagram) or an unspecified quantity (perhaps the area of the shaded 

part, or the number of the shaded parts, or the non-shaded parts, or something else yet).  
 

 

Figure 4. A question representing the Part-of-the-whole subconstruct in (Charalambous & Pitta-Pantazi, 

2007). 

The other question representing the Part of the whole construct in (Charalambous & 

Pitta-Pantazi, 2007) is: “If [drawing of 4 dots configured as on dice] represents   
2

3
   of a set 

of marbles, draw the whole set of marbles”. This question qualifies as representing the Part 

of a whole construct, because the marbles represented by the 4 dots can be thought of as 

part of the whole set of marbles and the fraction representing the relation is less than 1. In 

our approach, we would think not of objects but of their measures – in this case, two 

cardinalities, one being 4 and the other unknown – which are separate abstract entities, so 

the notion of a fraction being a part of a whole does not make sense.  

In the style of the problems in our courses, we would rather ask, for example: 

 Jack and Jill were playing a game of marbles. Jack lost 4 marbles to Jill and realized that he thus 

lost  
2

3
  of the number of marbles he came with. How many marbles he came with?  
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This problem would be classified as a problem of the type “Given quantity is given 

fraction of WHAT QUANTITY? A problem such as the following would also fall into this 

type, although the compared sets of marbles are physically separate and the given fraction 

is greater than 1:  

Jack and Jill were playing a game of marbles. Before the start of the game, Jack had 12 marbles 

which was  
6

5
  of the number of Jill’s marbles. How many marbles did Jill bring to the game?   

The point we want to make here is that the basis of classification of problems into 

types in our approach is quite different from the way problems are brought together from 

the point of view of the subconstructs model.   

We distinguish three types of basic multiplicative problems about fractions of 

quantities, depending on which of the three variables in the statement “𝐴  is  
𝑎

𝑏
  of  𝐵” is 

unknown:  

Type “A”:  WHAT QUANTITY is the given fraction of the given quantity? 

Type “a/b”:  Given quantity is WHAT FRACTION of another quantity? 

Type “B”: Given quantity is the given fraction of WHAT QUANTITY? 

 

These problems qualify as multiplicative because, if we define the product of a fraction   
𝑎

𝑏
  by a quantity 𝐵 as the quantity 𝐴 which is the fraction  

𝑎

𝑏
  of  𝐵, then type “A” problems 

require multiplication of a fraction by a quantity; type “a/b” problems require division
13

 of 

a quantity by a quantity, and type “B” problems require division of a quantity by a fraction.  

Besides these basic multiplicative problems, the theory of fractions of quantities treats 

basic additive problems, where two fractions of the same quantity are added or subtracted 

to produce a fraction of that quantity, several types of problems about ordering fractions of 

quantities, and problems where two fractions of a unit of length are multiplied to produce a 

fraction of a unit of area. More complex problems require coordinated solving of several 

such basic types of problems.  

For example, a mildly complex problem we gave as homework in the second week of 

Year III involved two type “A” problems, besides using the two equivalent 

characterizations of fraction of quantity, DoF-I and DoF-II. The situation in the problem 

was: 

Jack bought a tablet of dark chocolate: pure cocoa was 4/5 of the weight of the whole tablet. 

Jill bought a tablet of bitter-sweet chocolate. The weights of the tablets were the same: 100 g. 

To consume the same amount of pure cocoa, Jack would have to eat 3 of his tablets, and Jill - 4 of 

hers. 

Two of the questions in the problem were:  

The amount of cocoa in the bitter-sweet chocolate tablet is what fraction of amount of cocoa in the 

dark chocolate tablet?  

If Jill ate a whole tablet of the bitter-sweet chocolate, how much cocoa has she consumed, in grams? 

If we denote by 𝐶𝑑 the weight of pure cocoa in the dark chocolate tablet and by 𝐶𝑏 – 

the weight of pure cocoa in the bitter-sweet chocolate tablet, then the information in the 

problem tells us that 3 ×  𝐶𝑑 =  4 ×  𝐶𝑏. By the barter definition, this implies that 𝐶𝑏 is  

                                                      
13 Qualifying this operation as division follows from understanding division by something as the operation 

inverse to multiplication by this something. 



 
 
International Journal for Mathematics Teaching and Learning              2017, Vol. 18.2, 203 - 239 

 

224 

 

3

4
  of  𝐶𝑑. On the other hand, we are told that 𝐶𝑑  is   

4

5
   of the weight of the tablet, that is, 

of 100 g. [Problem of type “A”]. This means that if 100 g is 5 units then 𝐶𝑑 is 4 of these 

units. Since one such unit is 100 g divided by 5, or 20 g, then 𝐶𝑑 = 4 × 20 g = 80 g. So 

now we can find 𝐶𝑏, because we know that 𝐶𝑏 is  
3

4
  of 80 g. [Another problem of type 

“A”]  Reasoning based on the common unit definition leads to 𝐶𝑏 = (80 g : 4) × 3 = 60 g.  

One would expect the Measure subconstruct to be the closest to our measurement 

approach. But here too, there is little similarity. This construct seems to be associated with 

representing fractions on the number line and various problems about ordering abstract 

fractions.  

From the point of view of our measurement approach the problems quoted in 

(Charalambous & Pitta-Pantazi, 2007) as requiring this construct are quite heterogeneous. 

In Problem 1 a certain distance on the number line is given as representing the fraction 
5

9
  

of an unknown distance. This is a problem of type “B”, just like the problem about marbles 

quoted above. For us, the two problems would be grouped together. In the subconstructs 

approach, they belong to different subconstructs.   

The second problem (Problem 2) associated with the Measure subconstruct in 

(Charalambous & Pitta-Pantazi, 2007) is: “Name one fraction that appears between  
1

8
  and  

1

9
 “.  For us, this problem belongs to the theory of abstract fractions where order is defined 

formally: 
𝑎

𝑏 
<  

𝑐

𝑑
  ⇔ 𝑎 × 𝑑 < 𝑏 × 𝑐.  In our approach, we would not place Problems 1 and 

2 in the same group. They belong to different theories. Problem 1 belongs to the theory of 

fractions of quantities; Problem 2 – to the theory of abstract fractions.  

In the theory of fractions of quantities questions about order would be embedded in a 

context of quantities, such as e.g., this problem, given in the final examination in Year II: 

A retailer purchased 9 gallons of canola oil and wants to put it in smaller cans for sale.  He knows 

his customers will NOT be interested in buying less than 
1

5
  gallon or more than   

2

5
   of a gallon of 

oil at a time. If he decides to put the oil in  
2

5
 - gallon cans, how many of them will he need?  Show 

how you calculated the answer, and explain what operations on fractions of quantities you have 

performed.  

The subconstruct of Ratio has something in common with our approach, because it is 

described as focused on “comparison between two quantities” (Charalambous & Pitta-

Pantazi, 2007, p. 297) and is customarily associated with problems where the two 

quantities are themselves fractions of different quantities (e.g., problems comparing the 

taste of water solutions, their sweetness, salinity, acidity, “oranginess”, etc.).   In the 

bottom-up version of our measurement approach, introduced in Year II, such problems 

play an important role in that phase of the development of the theory of fractions of 

quantities where we work on the passage from fractions of quantities to abstract fractions.  

In Year I of the experiment, at the beginning of the course, we used the word “ratio”, 

without explicitly defining it, to define number (as ratio of a quantity to the unit in which it 

was measured) and fraction as a particular kind of number. As mentioned before, we were 

not satisfied with the effect of this approach on students’ conceptions of fractions. So, in 

Year II, fraction of quantity was defined without reference to the idea of ratio. The notion 

of ratio was introduced by the end of the course, after the theory of fractions of quantities, 

and after a brief expository lecture about the mathematical theory of rational, irrational and 

real numbers. We needed the notion of real number to define ratio, because we wanted to 
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highlight the fact that, given two quantities of the same kind, it may happen that neither is 

a fraction of the other, but we can always speak of their ratio. For example, the 

circumference of a circle is not a fraction of its diameter, but the ratio of these two lengths 

exists: it is the real number called 𝜋.  In the textbook that we produced for the course, we 

defined what it means for one quantity to be in such and such ratio to another as follows 

(Sierpinska, 2015, p. 24): 

The ratio of one quantity to another can be expressed as an ordered pair of real numbers, or as a 

single real number.  

Let  𝐴  and  𝐵  be two quantities of the same kind, and let  𝑎  and 𝑏  be positive real numbers.  

DEFINITION OF RATIO AS A PAIR OF NUMBERS (DoR-I)  We say that the ratio of  𝐴  to 𝐵  is    

𝑎 ∶  𝑏   if  𝑏 × 𝐴 = 𝑎 × 𝐵.   

DEFINITION OF RATIO AS A SINGLE NUMBER (DoR-II)  We say that the ratio of  𝐴  to  𝐵  is 

the number  𝑟,  if   𝐴 = 𝑟 × 𝐵.   

These definitions were preceded and followed by examples of usage of the phrases “the 

ratio of … to … is…” and “is the fraction … of…” and how one can sometimes translate 

one into the other and sometimes not, and when it is more convenient to use a single 

number to represent the ratio and when a pair of numbers is more meaningful.  

Teaching the Measurement Approach to Fractions to Prospective Elementary 

Teachers  

We did not expect students to get accustomed to the measurement approach quickly. 

Especially, we did not expect them to find it easy to conduct reasonings based on 

definitions. Even mathematics majors learn it only at the university, sometimes in special 

“Introduction to mathematical thinking” courses. So we took the time to nurture their 

understanding by offering many problems to solve and then discussing their solutions with 

them. There were  weekly assignments composed of up to 10 short quiz-type exercises 

(graded electronically) and 1-2 longer essay-type questions (graded manually, with 

individual comments explaining any mistakes); classroom discussions in interactive 

lectures (2 hours weekly) and labs (1 ¼ h weekly). There was a mid-term exam whose 

purpose was formative, rather than evaluative. There was also a final examination, whose 

purpose was evaluative but its weight in the course was only 40%. The whole unit on 

fractions lasted 8 weeks each year.  A subset of the exercises and problems used in the 

experiments can be gleaned from the texts used for the courses (Sierpinska & Bobos, 2015; 

Sierpinska, 2015). Examples have also been given in the previous sections of this paper.  

A brief outline of the mathematical organization
14

 of the content of the courses in 

Years II and III of our experiment has been given in the Introduction. Some details of the 

didactic organization were given in the examples that we used to contrast our approach 

with other approaches in section 4. Here, we offer more information on the didactic 

organization of the beginning of the courses, focusing on the introduction of the definitions 

of fraction of a quantity. We also give examples of students’ responses to the approach, 

focusing on issues related to students’ understanding of the definitions.  

                                                      
14 We use the terms mathematical and didactic organization of content in a course in the sense of the 

Anthropological Theory of the Didactic (Chevallard, 1999; Barbé, Bosch, Espinoza, & Gascón, 2005). 
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Definitions of the Phrase, “Quantity A is the fraction a/b of quantity B” 

The courses started by posing the question: What does it mean for one quantity to be a 

fraction of another quantity? This required clarifying what the instructor meant by quantity 

and was an opportunity to distinguish between quantities and abstract numbers. In Year II, 

hands-on activities of measuring quantities (weights / volumes of an apple and its parts, 

weights of a pizza and its slices) led to distinguishing quantities from objects and 

rephrasing sentences about fractions of something as sentences about fractions of 

quantities. The meaning of these sentences was then stated, by the instructor, in the form of 

the common unit definition:  

Let 𝑄1 and 𝑄2 be quantities of the same kind. Let 𝑎 and 𝑏 be two whole numbers, with 𝑏 ≠ 0. We 

say that the quantity 𝑸𝟏 is the fraction   
𝒂

𝒃
   of the quantity 𝑸𝟐 if there exists a common unit 𝒖 

such that 𝑄1 measures 𝑎 units 𝒖 and 𝑄2 measures 𝑏 units 𝒖. (Year II definition of fraction of a 

quantity; emphasis in the original) 

In Year III, additionally, the barter meaning was introduced, based on, first, a story of a 

transaction whereby 5 sheep were exchanged for 3 cows, and then by a hands-on activity 

of measuring the length of a coffee stirrer with the length of a toothpick. The definitions, as 

already mentioned, were labelled DoF-I (barter) and DoF-II (common unit).  

DoF-I: If two non-zero quantities,  𝐴  and  𝐵,  are related so that some whole multiple of one of 

them is equal to some whole multiple of the other, i.e.,  𝑚 × 𝐴 = 𝑛 × 𝐵  where 𝑛  and  𝑚 are whole 

numbers, then we say that 𝐴  is the fraction   
𝑛

𝑚
   of 𝐵. 

DoF-II: We say that a quantity  𝐴   is a fraction of a non-zero quantity  𝐵 , if we can find a common 

unit  𝒖  such that both quantities measure whole numbers of such units.  If  𝐴   measures  𝑛  units  𝒖  

and  𝐵  measures  𝑚  units  𝒖, where  𝑛  and  𝑚  are whole numbers, then we say that  𝐴  is the 

fraction   
𝑛

𝑚
   of  𝐵.   

In Year III, in line with our pursuit of fostering systemic thinking, we convinced the 

students that the two definitions are equivalent: if 𝐴 is  
𝑎

𝑏
  of 𝐵 in the sense of one 

definition then 𝐴 is also  
𝑎

𝑏
  of 𝐵  in the sense of the other. This was done, in class, by 

means of questions such those below: 

1. Given two quantities 𝐴 and 𝐵 such that  2 ×  𝐴 =  3 ×  𝐵,  explain why there must be a unit  𝑢  

such that  𝐴  measures 3 units  𝑢  and  𝐵 measures 2 units  𝑢.  

2. Given two quantities  𝐴  and  𝐵.  For some unit  𝑢, A measures 4 units 𝑢  and  𝐵  measures  5 

units 𝑢. Explain why the quantities 5 ×  𝐴 and 4 ×  𝐵 must be equal.   

Students first worked on these examples in small groups at their desks and then a few 

were asked to present their reasoning to the whole class. The teacher’s role in these 

presentations was to turn these examples into generic example proofs (Yopp, Ely, & 

Johnson-Leung, 2015), by drawing students’ attention away from  these particular values 

as such, and pointing to the generalizable elements of the reasoning. Line segment 

diagrams were used as a visual support (Figure 5). 
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Question 1 

 

 
Question 2 

 

Figure 5. Hand drawn line segment diagrams used to represent the given relations in questions aimed at  

demonstrating the equivalence of the common unit and the barter definitions of fraction of a quantity. 

Identifying the Quantities Involved in the Fractional Relation 

An important issue in the visual approach are mistakes related to not asking oneself 

“What is the unit?” in a problem about fractions (Lamon, 2012, p. 98). The problem is 

exacerbated by the fact that, in the visual approach, the reference quantity is often implicit 

and/or ambiguous. But this problem exists also in the measurement approach. In spite of 

efforts to make quantities explicit and to avoid ambiguity, unintended interpretations do 

occur. Hence the need to confront students with situations similar to those they know from 

learning fractions by the visual approach where their old and new understandings of 

fractions would compete in identifying the quantities considered in a fractional relation.  

Below we give examples of tasks that proved effective in revealing these competing 

understandings in students in our experiment. 

Equal Sharing Tasks – Probing Students’ Understanding of the Common Unit 

Definition 

Equal sharing problems seemed quite likely to provoke discussions about what 

quantities are being compared in a problem. After a sharing situation was described, two 

questions were asked: one where each person’s share was to be expressed as a fraction of 

the total amount shared, and one where each person’s share was to be expressed as a 

fraction of the unit in which the total amount was measured. For example, 

Five people are sharing, equally, 8 identical small thin-crust pizzas, topped with a “Hearty 

Marinara” sauce and cheese.  Assume we measure the quantity of pizza by its weight. Each pizza 

weighs 355 g.  Justify your answers. 

a. What fraction of the 8 pizzas will each person get?   

b. What fraction of 1 pizza will each person get? 

When first confronted with a problem of this type in Year II, quite a few students 

produced the same fraction in both questions: one-fifth.  Here is how one of them 

reasoned: Each pizza will be cut into 5 slices; a rough drawing is made (Figure 6).   

 

Figure 6. A student's representation of 8 pizzas cut into 5 slices each. 
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Then the student wrote: 

355 g per pizza    a total of 2840 g of pizza. If 1 pizza is split 5 ways each piece is 71 g. 

One person will get 71 g of pizza 8 times = 568 g in total. 568 g is what fraction of 2840 g? 

The student’s answer to that question is shown in Figure 7 . The student swiftly 

switched from fractions of quantities to formal operations on abstract fractions. 

 

Figure 7. The student’s answer to “568 g is what fraction of 2840 g?”  

The student’s final answer to question (a) was: “therefore 1 person would get  
2

10
  of 8 

pizzas.”  

This student’s response to question (b) was based on the assumption of the particular 

way of slicing the pizzas and sharing them: each person takes one slice from each pizza 

that has been cut into 5 slices. Since one slice weighs 71 g and the whole pizza weighs 355 

g, one slice is two-tenths of the whole pizza. This last fraction is obtained, again, by formal 

fraction reduction. Hence each person gets 
2

10
 of one pizza. (Figure 8)  

 

Figure 8. The student's response to question (b). 

 These problems and students’ solutions were discussed in the labs with them. 

 Probing Students’ Understanding of the Barter Definition 

The following problem, which appears to be an easy application of the barter 

definition, produced nevertheless many incorrect responses. Many students did not 

correctly distinguish between the quantities and the multipliers in an implicitly described 

relation between the capacities of tall and short glasses: 

(Year-III-Midterm-Question 2) a. A jar can be filled to capacity with either 6 tall glasses or 9 short 

glasses of water.  What fraction of the capacity of the tall glass is the capacity of the short glass?    

Derive your answer from one of the definitions of a fraction of a quantity. b. A jar can be filled to 

capacity with either 6 tall glasses or 9 short glasses of water.  If the capacity of the short glass is 30 

mL, what must be the capacity of the tall glass?  Show your reasoning.  c. A jar can be filled to 

capacity with either  6 
3

5
  tall glasses or  9 

3

10
  short glasses of water.  What fraction of the capacity 

of the tall glass is the capacity of the short glass?  Show your reasoning.   
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In this question, the quantities to compare – capacity of the short glass, and capacity of 

the tall glass – are explicitly mentioned, but the capacities are not specified in terms of a 

standard unit (e.g., mL), but by their relations with a third quantity, the capacity of a jar.  

The equality 6 × capacity of tall glass = 9 × capacity of sort glass must be deduced from 

the text of the problem; it is not explicitly given. Moreover, the order of the quantities is 

reversed in the question compared to the phrase “capacity of the short glass is   
6

9
   (or   

2

3
 ) 

of the capacity of the tall glass” which is expected as an answer.   

The question 2b is much simpler and it is possible to solve it without using fractions.  

The objective of this question was to provide students with an opportunity to verify their 

answers to 2a.  If they obtained an incorrect answer in 2a and used it to calculate the 

answer to 2b, they were likely to obtain an obviously absurd answer (the tall glass having 

smaller capacity than the short glass).  This might motivate them to go back to Question 2a 

and revise their solution; this would be taken as evidence of reflective thinking.  

Question 2c has the same structure as 2a but it is more difficult because the multipliers 

are not whole numbers.  The notion of fraction of a quantity is less easily avoided.  The 

given information can be written as 6
3

5
× capacity of tall glass = 9

3

10
× capacity of short glass, but 

one cannot directly apply the barter definition to obtain the answer as it was possible in 

Q2a.  This information has to be processed using the notion of fraction of a quantity so that 

an equality of whole number multiples of the capacities of the tall and short glasses is 

obtained.  Therefore this question was a sharper diagnostic instrument to test students’ 

understanding of fractions of quantities.   

But even the question 2a was not straightforward and of the 34 students writing the 

test, only 13 (38%) obtained a numerically correct answer (the fraction 6/9 or 2/3), and the 

numerically correct answer was accompanied by a satisfactory quantitative interpretation 

in only 10 of these cases. The solution of one of the 3 students whose answer was 

numerically but not quantitatively satisfactory is transcribed in Figure 9. 

 

Figure 9. Transcript of a student’s solution to Question 2a (Year III, Midterm). 

The student appears to interpret the numbers 6 and 9 as representing the quantities, not 

the multipliers: the arrows in her solution (Figure 9) connect “short glass” with the abstract 

number “6” and “tall glass” with “9.”  In the problem as stated, 6 and 9 are multipliers and 
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the quantities are the capacities of the tall and short glasses.  What this student writes does 

make sense, however, because the relationship “9 × capacity of short glass = 6 × capacity 

of tall glass” indeed implies that if the capacity of the short glass is 6 units then the 

capacity of the tall glass is 9 units.  Had she made this explicit, her reasoning would be 

quantitatively satisfactory.  But she did not represent this equality in any way in writing.  

We can’t say if she conceived of the 6 and 9 as being numbers of some units of capacity 

and she was only unable to put it in words or if she merely had a vague sense that a short 

glass cannot be a fraction greater than 1 of the tall glass, which is a mixture of thinking of 

fractions as abstract numbers and a quantitative intuition.  If we interpret what she wrote 

literally, she might have been solving the numerical problem: “6 is WHAT FRACTION of 

9?” Or she may have just looked at the two numbers in the problem, 6 and 9, and knew that 

the answer should be   
9

6
   or  

6

9
 ; she chose the latter because it made more sense in the 

statement, “short glass is  
6

9
  of tall glass.” She wrote this answer first; it may be that the 

rest of her solution is just a formal discourse that she believed the teacher expected from 

her by way of justification based on a definition of fraction of a quantity.
15

 She did not 

derive her answer from a definition.  Similar behaviour could be observed in the other two 

students who obtained numerically correct answers in Question 2a, without evidence of 

satisfactory quantitative reasoning.   

In total, there was evidence that 8 (24%) students understood the problem as asking: 

“the number of short glasses is WHAT FRACTION of the number of tall glasses”, and 3 as 

“the number of tall glasses is WHAT FRACTION of the number of short glasses.” 

Question 2b was generally well done, with 24 (71%) of solutions correct.  But 17 of 

these solutions (50% of all solutions) did not use fractions.  Of those 17, 13 solutions were 

correct.  In the correct solutions, quantitative reasoning on whole numbers of millilitres 

and numbers of glasses was used: the capacity of the jar was calculated as 30 mL × 9 = 

270 mL, and then this quantity was divided by the number of tall glasses: 270 mL ÷ 6 = 45 

mL to obtain the capacity of the tall glass.   

Among the four incorrect solutions that did not use fractions, three contradicted 

quantitative common sense: the capacity of the tall glass was less than the capacity of the 

short glass.  Such lack of sensitivity to quantitative contradictions appeared also in 5 

students who did use fractions to solve Q2b.  Only two of these 8 students appeared to 

notice the contradictions and proceeded (albeit unsuccessfully) to revise their solutions, 

thus displaying some reflective thinking.  Other students were satisfied with producing a 

number, any number, and moved on to the next question.   

Among students who used fractions in Question 2b (17 or 50%), there were 5 students 

who used the incorrect fraction they obtained in 2a to solve 2b.  Their results also 

contradicted quantitative sense – the capacity of the tall glass was less than the capacity of 

the short glass – yet this did not entice them to revise their solutions to Q2a.  Again – thus 

exhibiting a lack of reflective thinking.   

Question 2c was, predictably, the least well done.  While 13 students (38%) obtained 

numerically correct answers in 2a, only 7 students (21%) did so in 2c.  Six of these 7 had 

also numerically correct answers in 2a.  The student who obtained an incorrect answer in 

                                                      
15 This behaviour is similar to one known in research on undergraduate students’ difficulties in Linear 

Algebra as symptomatic of the “obstacle of formalism” (Dorier, Robert, Robinet, & Rogalski, 2000). 



 
 
International Journal for Mathematics Teaching and Learning              2017, Vol. 18.2, 203 - 239 

 

231 

 

2a but a numerically correct answer in 2c, was not reasoning quantitatively in Q2c: she was 

solving the numerical problem “6
3

5
  is WHAT FRACTION of  9

3

10
?” 

Ten of the numerically correct solutions in Q2a were based on (or justified with) a 

satisfactory quantitative reasoning, but even this did not guarantee such reasoning in Q2c: 

there were only 4 such solutions.  Most students were solving the problem “One of the 

given numbers is what fraction of the other given number?”, confusing quantities and 

multipliers.  They obtained the answers by dividing one of the given multipliers by the 

other, formally, as abstract fractions, with most not stopping to reflect on the quantitative 

sensibility of their results. The reflection did come later, however, when the tests were 

returned: this problem was thoroughly discussed in the following lab.  

Verifying if a Given Quantity is Indeed a Given Fraction of Another Given Quantity 

Another type of questions that served specifically to help students understand the 

definition(s) of a fraction of a quantity was to verify if a given quantity  𝐴  is both a given 

fraction  
𝑎

𝑏
  and another given fraction   

𝑐

𝑑
  of another given quantity  𝐵. The fractions  

𝑎

𝑏
  

and  
𝑐

𝑑
  were chosen to be equivalent as abstract fractions but the first quantity was not 

necessarily this particular fraction of the second. For example, the statement 𝑆 to verify 

could be: 

1
1

8
 𝑙𝑏𝑠 is  both  

3

7
  and  

24

56
  of  2

3

4
 𝑙𝑏𝑠 (𝑆) 

𝑆  is a conjunction of two statements,  𝑆1 and  𝑆2, both of which have to be true for the 

statement to be true: 

[1
1

8
l𝑏   𝑖𝑠   

3

7
   𝑜𝑓   2

3

4
𝑙𝑏]   𝐴𝑁𝐷 [1

1

8
𝑙𝑏    𝑖𝑠    

24

56
   𝑜𝑓   2

3

4
𝑙𝑏] 

 𝑆1     𝑆2 

For 𝑆1 to be true, by the common unit definition, there should be a unit 𝑢 such that  

1
1

8
 𝑙𝑏  = 3 ×  𝑢 and 2

3

4
 𝑙𝑏 = 7 × 𝑢. But this is impossible because the unit which satisfies 

the first condition ( 
3

8
𝑙𝑏  or 6 𝑜𝑧 ) does not satisfy the second condition. So 𝑆1 is false and 

this is enough to conclude that 𝑆 is false. If 𝑆1 were true, then it would be necessary to 

check if 𝑆2 is also true. But if 𝑆1 was true, then 𝑆2 would also be true because 24 and 56 

are 8 times larger than 3 and 7, respectively; so it would be enough to take a common unit 

8 times smaller than the one responsible for the validity of 𝑆1.   

If the barter definition is available, then it is enough to verify if 7 times the first 

quantity is the same amount as 3 times the second quantity (for 𝑆1), and if 56 times the 

first quantity is the same amount as 24 times the second quantity (for 𝑆2). Again, if 𝑆1 is 

true then 𝑆2 is true and vice versa. 

Such questions were discussed in class, in the labs, given as homework and were 

included in the midterm and final examinations. We give a brief account of Year II 

students’ solutions to a problem of this type in their final examination, which took place 5 

weeks after the end of the unit on fractions in the course.  The question was: 

(YEAR II – FINAL – Question 1b) Use the definition of a fraction of a quantity to justify the 

statement:   1
1

8
 𝑙𝑏  is both   

3

7
  and   

24

56
   of  2

3

4
 𝑙𝑏.  
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Recall that the barter definition was not available in Year II. So “the definition” refers 

to the common unit definition of fraction of a quantity.  

The task is “to justify”, but the statement is false. For students who tend to ignore the 

quantitative context of problems and focus on numerical values alone, the fact that  
3

7
   and   

24

56
   are equivalent as abstract numbers could easily create the illusion that the statement is 

true and it is not necessary to check the other elements of it. 

Of the 38 students who wrote the final examination in Year II, only 5 (13%) did not 

fall into the trap and found that neither 𝑆1 nor 𝑆2 are true.   These five students considered 

the concrete values of the given quantities to establish the relation between them and check 

it against the given fractions – before discussing the equivalence of the two abstract 

fractions.  For these students, the definition acquired full operational power, leading them 

to disprove the statement when one of the main definitional conditions was not satisfied.  

Each solution could be discussed as an interesting case study with regard to the issue of 

transfer of knowledge disseminated in class: despite the fact that the question was far from 

being open-ended it spurred quite different problem solving behaviours among the five 

students in this group. One student, very practically, converted the given quantities to 

ounces to easily observe that they are not in the given relationship; his solution was only a 

few lines.  Another student meticulously checked all the conditions of the definition – even 

the non-essential ones – to produce a rigorous proof that the statement is false; her solution 

covered a couple of pages.  All 5 students in this group displayed features of theoretical 

thinking, particularly reflective and systemic-definitional thinking and did not confuse 

quantities with abstract numbers.  

Another 10 (26%) students interpreted 𝑆 as a statement about equivalence of fractions 

of quantities; the problem they appeared to be solving was to show that a quantity – in 

general, not the given particular quantity – can be both  
3

7
   and   

24

56
   of another quantity.  

The main characteristic of these students’ solutions was that they ignored the concrete 

values of the quantities in their reasoning and thus failed to notice that statements  𝑆1  and  

𝑆2  were false.  In logical terms, the solutions of this group contained the proof of the 

conjunction of 𝑆1 and 𝑆2, assuming that 𝑆1 and 𝑆2 are true – a condition they failed to 

check. Some students indeed referred to the quantities as variables, as in the following 

response:  

A quantity  Q1  is   24/56  of a quantity  Q2  when measured with a common unit  u.  When both 

quantities are measured with a unit  u’  such that  u’=8u  then Q1  which was  24u  becomes  3u’  

and Q2  which was  56u  becomes  7u’.  Q1  is  3/7  of  Q2.  

Other students in this group featured the particular values of the given quantities in 

their solutions, but did not use these values, treating them as if they were letter variables. 

Responses in this group contained sensible arguments, capturing the essence of the 

problem: the equivalence of fractions of quantities.  Students proved the equivalence by 

demonstrating a quantitative relation between two units used to measure the two given 

quantities.  In doing this they resorted to the theoretical constructs provided in the course 

and made them operational for producing justifications within the given system (displaying 

systemic-definitional thinking).  Their productions read mostly well, as coherent written 

discourse with few inconsistencies, and mathematical notation used adequately (good 

analytical thinking).  All of the students in this group failed to establish the statement as 

false because they didn’t engage in hypothetical thinking so as to ask if the relationship 
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between the given quantities is indeed   
3

7
   (or   

24

56
  ) before proceeding to show that it is 

both one and the other of these fractions.  This flaw in their arguments could be attributed 

to a logical miss: proving only that 𝑆1 implies 𝑆2 (or that 𝑆2 implies 𝑆1) without 

validating any of these statements.   

In the remaining 23 (61%) solutions, the focus on numerical values and omission of the 

quantitative context of the problem were very present and there were serious deficiencies 

of theoretical thinking. There was a great variety of interpretations and strategies used. A 

detailed analysis of these solutions is available in the first author’s doctoral thesis (Bobos-

Kristof, 2015).   

Overall, of the 38 students, 15 or about 40%, engaged in quantitative reasoning, and in 

justifications using the theoretical tools provided in the course.  Yet more than a half of the 

students remained confined within the numerical domain of their previous knowledge of 

fractions, often in a procedural fashion, appropriating only superficial aspects of the taught 

theory of fractions of quantities. 

To Add or Not to Add the Barter Definition in the Course 

Such distribution of highly positive and highly negative results posed a dilemma for us 

after the Year II experiment: should we renounce teaching something that is too difficult 

for some students or should we teach it nonetheless for those who stand to greatly benefit 

from it? We decided to try again next year, after a revision of the approach. We decided to 

add the barter definition early in the course, since it certainly simplified reasoning in the 

verification problems and in many other problems as well. It turned out – as could be 

expected – that while this change solved some issues, it also created another: it provoked 

some students to replace theoretical reasoning by performing formal algebraic operations 

on equations.  

There were not many such students; most students had bad experience with algebra in 

secondary school and did not want to return to it. A few, however, interpreted the barter 

definition not as a definition, but as a result of multiplying both sides of the equation 

𝐴 =
𝑎

𝑏
× 𝐵  by 𝑏. They felt they did not need a definition of the meaning of this equation; 

after all, they knew from their previous education what it means for one quantity to be a 

fraction of another quantity. All they needed was a procedure to calculate the 𝐴, the 
𝑎

𝑏
 or 

the 𝐵, whichever happened to be unknown in the problem. Their ease with algebraic 

operations worked, in fact, as an obstacle against their engagement with definitional 

thinking about fractions of quantities.  

This algebraic obstacle, as we called it, did not appear in Year II where only the 

common unit definition was used. The definitional condition cannot be derived 

algebraically from the phrase  𝐴 is   
𝑛

𝑚
   of 𝐵. This definition is close to the idea of fraction 

of something and as students had no choice but to use it in many problems about 

quantities, it gradually superseded the material conception in some students – as many as 

almost half of them by the end of the course. A few, as discussed above, even exhibited a 

very high level of mathematical sophistication.  

There was evidence, however, in the students’ questions and solutions, that some 

continued to understand the common unit definition as merely an unnecessarily 

complicated way of saying that a fraction is just a part of a whole, which is what I know 

anyway, no need for all those 𝑢’s and 𝐴’s.    
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The common unit definition is structurally more complex than the barter definition, so 

verifying if a given quantity is the given fraction of another given quantity using this 

definition poses a greater challenge. Such problems were relatively easy for Year III 

students to answer correctly (although their justifications were not always as desired), most 

using the barter definition. Year II students struggled to even assess the validity of such 

statements.  

Conclusions 

This paper is a contribution, on the one hand, to research experimenting with 

Davydovian approaches to teaching mathematics, and, on the other – to “an enduring 

discussion of what the community intends that students learn” which Thompson & 

Saldanha believe is one of the conditions for improved instruction: 

When teachers and teacher educators lack clarity and conceptual coherence in what they intend 

students learn, they introduce a systematic disconnection between instruction and learning. This 

becomes a major obstacle to creating instruction that empowers students to think mathematically.   

(Thompson & Saldanha, 2003, p. 110) 

In this paper, we tried to be as clear as possible within the limits of a journal article 

about what we intended prospective elementary teachers in our design experiment to learn 

about fractions. We are not claiming that this is what they should learn. We only make 

clear what we intended them to learn and what challenges we had to face.  

Our research shows that connection between the material and the formal conceptions of 

fractions remains difficult to achieve. At the same time, it also shows that the measurement 

approach exposes the disconnection and thereby gives the instructor and the students the 

opportunity to become aware of it and to try to overcome it. The measurement approach 

rests on two conceptual pillars – quantitative reasoning and theoretical thinking in 

mathematics – neither of which is well developed in students at the start of their 

undergraduate studies whether in education or in other domains, such as mathematics. The 

instructor must be prepared to cope with this state of affairs and teach students to look at 

material objects from a quantitative angle and at mathematical statements from a 

theoretical perspective.  He or she must also be prepared for not achieving success with all 

students; they are adults, with well-entrenched habits of mind that may be radically 

different from quantitative and theoretical ways of reasoning.  

One might conclude from our report that the measurement approach presented here is 

too complicated and that the visual approach such as represented, for example, in (Parker 

& Baldridge, 2003), is much easier. We have heard this argument when presenting our 

research to colleagues
16

.  

It is easy to understand why the visual approach is more popular than the measurement 

approach.  The language is simpler – pictures of pizzas, cakes and partly shaded figures are 

sometimes used instead of explicit reasoning – and knowledge about standard units of 

measure is not necessary.  There is the impression of comparing objects directly, not 

indirectly, by means of their measures in concrete units as in the measurement approach.  

But this is only an illusion: 

                                                      
16 We take solace in knowing that Thompson and Saldanha have heard such remarks as well, when presenting 

their theory of understanding fractions but had not for that reason stopped believing in the soundness of their 

theory (Thompson & Saldanha, 2003). 
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… the illusion of an immediate transition from integers to fractional inversion by means of 

examples such as the division of four apples among three persons.  In this case, they have ignored 

the fact that the operation   (4 apples) ÷ 3 = 1
1

3
  apples   would make sense only if all four apples 

were identical in size.  Here ‘one apple’ has necessarily acted as the unit of measurement of volume 

or of weight. (Kolmogorov, 1960), quoted in (Davydov & Tsvetkovich, 1991, p. 104) 

Thus, the visual approach overtly speaks of dividing objects into parts, but implicitly 

treats these objects (one apple, one pizza, one circle, etc.) as some natural or almost 

standard units of measure and expects children to understand them this way.  Some 

children catch on, some don’t.  

We are not looking for an easier approach. We are looking for an approach which is 

grounded in the concrete reality, but is also, ultimately, amenable to engaging in 

mathematical thinking. We concur with Davydov and Tsvetkovich, that  

[t]he concept of fractional number is best introduced when it is based on their real source of origin – 

the measurement of quantities.  This method is completely justified from the standpoint of 

mathematics itself….  It is also highly productive from the psychological standpoint because it 

provides a connection between the concept, the process of its origination, and original material 

content and creates favorable conditions for the students subsequently to form an abstraction of the 

relationship between quantities which is contained in the very form of a fractional number.  This 

abstraction is very important both for the entire school mathematics course and for the general 

development of the students’ theoretical thinking…. (Davydov & Tsvetkovich, 1991, p. 107) 

Indeed, whatever the approach taken, fractions will remain a difficult subject to teach 

and to learn, be it anew – for children, or on second take – for prospective teachers.  

Understanding of fractions cannot be made easy by hands-on activities such as cutting 

objects into pieces, playing with colourful fraction apps, or displaying fraction signs in 

ingenious diagrams as in the visual approach
17

, nor by making the quantities, units and 

quantitative operations explicit in careful logical reasoning as in the measurement 

approach.  It cannot be made easy because understanding fractions requires abstraction of 

a second order.  

For understanding whole numbers, a person has only to abstract from qualitative 

characteristics of objects: e.g., abstract from the colour, the size and the mutual position of 

a collection of marbles and think only of their number.  But if the question is what fraction 

one quantity is of another one, it is necessary to make not only the previous qualitative 

abstraction to find the measures of these quantities, but also to establish a quantitative 

relationship between these quantities. One must be “thinking in [terms of] abstract 

relationships” (Davydov & Tsvetkovich, 1991, p. 87).  It is necessary to construct a 

complex system of conceptual schemas related to proportionality, measurement, 

multiplication and division (Thompson & Saldanha, 2003).  

There are, however, choices to be made regarding the mathematical and didactic 

organizations (Chevallard, 1999; Barbé, Bosch, Espinoza, & Gascón, 2005) of content 

when using the measurement approach to fractions in courses for prospective elementary 

teachers. There are choices to be made regarding the definitions of fraction of a quantity, 

the order in which operations on fractions of quantities are to be studied, what tasks and 

problems students will be asked to work on, etc. The mathematical and didactic 

organizations of content in Years II and III were not exactly the same. In particular, in 

Year III, the barter definition of fraction of quantity was added and we have often reflected 

                                                      
17 Teachers prepared using the visual approach do not seem to understand fractions well enough for teaching 

them to children. (Ma, 1999) 
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on the consequences of this decision on the quality of students’ mathematical thinking.  

Addition of the barter definition simplified the reasoning, but at the cost of rendering less 

visible the operation of conversion of unit of measurement which is essential in 

understanding the multiplicative nature of fractional relations (Davydov V. V., 1991).  It 

often worked better to prove that something is the case than it explained why it is the case.  

Some students complained about having no feel for the barter definition, even if they had a 

preference for it in deciding about the validity of statements of the form 𝐴 𝑖𝑠 
𝑛

𝑚
 𝑜𝑓 𝐵.  

Their arguments, however, were often symptomatic of the algebraic obstacle.  The barter 

definition appeared to make it more difficult for them to engage in systemic-definitional 

thinking.  

Given these pros and cons, we think that, in a future realization of the approach, we 

would introduce the common unit definition at the beginning of the course, let students get 

used to it and work with it on a variety of problems and only in a third or fourth week ask 

them to think about the validity of the barter characterization and check if it is equivalent 

to the common unit definition.    

But we could not have wished for the algebraic obstacle or other obstacles, such as the 

tendency to ignore units and focus on numerical values of quantities only, not to appear.  

Future teachers have them anyway; they have been constructing them all through their 

elementary and secondary education.  If these obstacles are not revealed, the teacher 

cannot help the students to overcome them.  Since the barter definition is a good trigger for 

especially the algebraic obstacle to reveal itself, it is a useful instructional tool.   

The conclusion from our research is not that the approach doesn’t work and should be 

abandoned.  We could say that it works if you work it: the difficulties and obstacles 

revealed in the research are a warning for both students and teachers that they will have to 

work hard for understanding to develop.  It points to aspects of thinking on which they will 

have to work particularly hard. 
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