### Using Integer Manipulatives: Representational Determinism

#### Abstract

#### Full Text:

PDF#### References

Adams, J. (1996). The super source: Tangrams. NY: Cuisenaire Company of America, Inc.

Ainsworth, S. E., Bibby, P. A., & Wood, D. J. (2002). Examining the effects of different multiple representational systems in learning primary mathematics. The Journal of the Learning Sciences, 11(1), 25-62.

Ball, D. L., Thames, M., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59, 389-407.

Berenson, S. B., Valk, T. V. D., Oldham, E., Runesson, U., Moreira, C. Q., & Broekman, H. (1997). An international study to investigate prospective teachers’ content knowledge of the area concept. European Journal of Teacher Education, 20(2), 137–150.

Berman, B., & Friederwitzer, F. (1985). Color tile activities. NY: Cuisenaire Company of America, Inc.

Bogdan, R. C., & Biklen, S. K. (2003). Qualitative research for education: An introduction to theories and methods (4 ed.). Boston: Allyn and Bacon.

Brenner, M. E., Herman, S., Ho, H. -Z., & Zimmer, J. M. (1999). Cross-national comparison of representational competence. Journal for Research in Mathematics Education, 30(5), 541-557.

Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Durán, R., Reed, B. S., & Webb, D. (1997). Learning by understanding: The role of multiple representations in learning algebra. American Educational Research Journal, 34(4), 663-689.

Bruner, J. (1966). Toward a theory of instruction. Cambridge, MA: Belknap Press.

Clements, D. H. (1999). “Concrete” manipulatives, concrete ideas. Contemporary Issues in Early Childhood, 1(1), 45–60.

Creswell, W. J. (2003). Research Design: Qualitative, quantitative and mixed methods approaches (2 ed.). London: Sage Publications.

Dienes, Z. P. (1960). Building up mathematics. London: Hutchinson Educational.

Duval, R. (2002). The cognitive analysis of problems of comprehension in the learning of mathematics. Mediterranean Journal for Research in Mathematics Education, 1(2), 1-16.

Duval, R. (2006). A cognitive analysis of problems of comprehension in the learning of mathematics. Educational Studies in Mathematics, 61, 103-131.

Ernest, P. (1985). The numbers line as a teaching aid. Educational Studies in Mathematics, 16, 411-424.

Fuson, K., & Briars, D. (1990). Using a base-ten blocks learning/teaching approach for first- and second-grade place value and multidigit addition and subtraction. Journal for Research in Mathematics Education, 21, 180-206.

Goldin, G. (2000). A scientific perspective on structured, task-based, interviews in mathematics education research. In A. Kelly & R. Lesh (Eds.), Handbook of Research Design in Mathematics and Science Education. Mahwah, NJ: Lawrence Erlbaum Associates.

Goldin, G. A. (2002). Representation in mathematical learning and problem solving. Handbook of international research in mathematics education, 197-218.

Goldin, G. A. (2003). Representation in school mathematics: A unifying research perspective. A research companion to principles and standards for school mathematics, 275-285.

Goldin, G., & Shteingold, N. (2001). Systems of representations and the development of mathematical concepts. The roles of representation in school mathematics, 2001, 1-23.

Goldin, G.A. (1998). Representational systems, learning, and problem solving in mathematics. Journal of Mathematical Behavior, 17(2), 137-165.

Greeno, J. G., & Hall, R. P. (1997). Practicing representation: Learning with and about representational forms. Phi Delta Kappan, 78, 361-367.

Harris-Sharples, S. (1993). Introduction. In A. Hoffman, & A. Glannon (Eds.), Kits, games and manipulatives for the elementary school classroom: A source book. New York: Garland Publishing.

Herbst, P. (1997). The number-line metaphor in the discourse of a textbook series. For the Learning of Mathematics, 17(3), 36-45.

Janvier, C. (1983). The understanding of directed number. In J. C. Bergeron & N. Herscovics (Eds.), Proceedings of the Fifth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 295-301). Montréal: Université de Montréal, Faculté de Sciences de l’Education.

Knuth, E. J. (2000). Understanding connections between equations and graphs. Mathematics Teacher, 93(1).

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65-99.

Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in

mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 33-40). Hillsdale, NJ: Lawrence Erlbaum Associates.

McKendree, J., Small, C., & Stenning, K. (2002). The role of representation in teaching and learning critical thinking. Educational Review, 54, 57-67.

Merenluoto, K. (2003). Abstracting the density of numbers on the number line--A quasi-experimental study. In N. A. Pateman, B. J. Dougherty, & J. Zilliox (Eds.), Proceedings of the 2003 joint meeting of PME and PMENA (Vol. 3, pp. 285-292). Honolulu, HI: CRDG, College of Education, University of Hawai’i.

Miles, M. B. & Huberman, M. N. (1994). Qualitative data analysis: an expanded sourcebook. Thousand Oaks, CA: Sage.

representational competence. Journal for Research in Mathematics Education, 30(5), 541-557.

Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers' mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8, 255-281.

Sfard, A. (1992). Operational origins of mathematical objects and the quandary of reification- The case of function. In E. Dubinsky, & G. Harel (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 59-85). Washington DC: Mathematical Association of America.

Stephan, M., & Akyuz, D. (2012). A proposed instructional theory for integer addition and subtraction. Journal for Research in Mathematics Education, 43(4), 428-464.

Strauss, A., & Corbin, J. (1990). Basics of qualitative research. London, England: Sage Publications Ltd.

Vlassis, J. (2008). The role of mathematical symbols in the development of number conceptualization: The case of the minus sign. Philosophical Psychology, 21, 555–570.

Zhang, J. (1997). The nature of external representations in problem solving. Cognitive Science, 21(2), 179-217.

### Refbacks

- There are currently no refbacks.