How the Relational Paradigm Can Transform the Teaching and Learning of Mathematics: Experiment in Quebec


  • Elena Polotskaia Université du Québec en Outaouais


The main goal of this paper is to show how Vasily Davydov’s powerful ideas about the nature of mathematical thinking and learning can transform the teaching and learning of additive word problem solving. The name Vasily Davydov is well known in the field of mathematics education in Russia. However, the transformative value of Davydov’s theoretical work in this field has not yet been fully recognized by the larger international community. In this article, I use Davydo’s vision of mathematics as the study of quantitative relationships—the vision underlying the relational paradigm in teaching and learning of mathematics. I use the example of one research project to demonstrate how the relational paradigm changes and reforms teaching practices. I discuss the teaching approach, developed within this paradigm, as well as the learning outcomes demonstrating the transformative power of Davydov’s ideas.

Author Biography

Elena Polotskaia, Université du Québec en Outaouais

Professor, Département des sciences de l'éducation


Alexandrova, E., 2004. Matematika 2 klass, II [Mathematics, grade 2, part 2], Moscow: Vita-Press.

Artigue, M., 2011. Les défis de l’enseignement des mathématiques dans l’éducation de base, Paris.

Barrouillet, P. & Camos, V., 2003. Savoirs, savoir-faire arithmétiques, et leurs déficiences. In M. Kail & P. M. Fayol, eds. Les sciences cognitives et l’école. La question des apprentissages. Paris: PUF, pp. 307–351.

Barrouillet, P. & Camos, V., 2002. Savoirs, savoir-faire arithmétiques, et leurs déficiences (version longue).

Bartolini Bussi, M.G., Canalini, R. & Ferri, F., 2011. Towards cultural analysis of content: Problems with variation in primary school. In J. Novotná & M. Hana, eds. The mathematical knowledge needed for teaching in elementary schools CEMT11. pp. 9–21.

Beckmann, S., 2004. Solving Algebra and Other Story Problems with Simple Diagrams : a Method Demonstrated in Grade 4 – 6 Texts Used in Singapore. Mathematics Educator, 14(1), pp.42–46.

Bodanskii, F.G., 1991. The formation of algebraic method of problem-solving in primary schoolchildren. In V. V. Davydov, ed. Soviet studies in mathematics education Volume 6 Psychological abilities of primary achool children in learning mathematics. Reston, VA: National Concil of Teachers of Mathematics.

Brissiaud, R., 2010. La pédagogie et la didactique des opérations arithmétiques à l’école ( 1 ) : Le dilemme de l’automatisation, celui de la symbolisation et l’inspection générale. Café pédagogique, (1), pp.1–22.

Cai, J. et al., 2005. The development of studients’ algebraic thinking in earlier grades: Lessons from China and Singapore. Zentralblatt für Didaktik der Mathematik, 37(1), pp.5–15.

Carpenter, T.P. et al., 1999. Children’s mathematics: Cognitively guided instruction, Portsmouth, NH: Heinemann.
Carpenter, T.P. et al., 1993. Models of problem solving: A study of kindergarten children’s problem-solving processes. Journal for Research in Mathematics Education, 24(5), pp.428 – 441.

Carpenter, T.P. & Moser, J.M., 1982. The development of addition and subtraction problem-solving skills. In T. P. Carpenter, J. M. Moser, & T. A. Romberg, eds. Addition and subtraction: cognitive perspective. Hillsdale, New Jersey: Lawrence Erlbaum Associates, pp. 9–24.

Checkley, K., 2006. The essentials of mathematics K-6: Effective curriculum, instruction, and assessment, Alexandria: VI: Association for supervision and curriculum development.

Christou, C. & Philippou, G., 1998. The developmental nature of ability to solve one-step word problems. Journal for Research in Mathematics Education, 29(4), pp.436– 442.

Coquin-Viennot, D. & Moreau, S., 2007. Arithmetic problems at school: when there is an apparent contradiction between the situation model and the problem model. The British journal of educational psychology, 77(Pt 1), pp.69–80.

De Corte, E., 2012. Résoudre des problèmes mathématiques: de la modélisation superficielle vers la modélisation experte. In GDM 2012: La recherche sur la résolution des problèmes en mathématiques: au-delà d’une compétence, au-delà des constats. Quebc, QC.

Davydov, V. V., 2008. Problems of developmental instruction: a theoretical and experimental psychological study, Hauppauge, NY: Nova Science Publishers.

Davydov, V. V., 1982. Psychological characteristics of the formation of mathematical operations in children. In T. P. Carpenter, J. M. Moser, & T. A. Romberg, eds. Addition and subtraction: cognitive perspective. Hillsdale, New Jersey: Lawrence Erlbaum Associates, pp. 225–238.

Davydov, V. V., 1990. Types of generalization in instruction : Logical and psychological problems in the structuring of school curricula. In Soviet studies in mathematics education Volume 2. Reston, VA: National Council of Teachers of Mathematics.

DeBlois, L., 1997. Quand additionner ou soustraire implique comparer. Éducation et francophonie, 25(1), pp.102–120.

Dougherty, B. & Slovin, H., 2004. Generalized diagrams as a tool for young children’s problem solving. Proceedings of the 28th Conference of the …, 2(1978), pp.295–302.

Ducharme, M. & Polotskaia, E., 2010. Two Scenarios for Problem Solving and Pro-algebraic Reasoning Development in Primary School Children. Journal of educational science & psychology, LXII(1), pp.170–184.

Elia, I., Gagatsis, A. & Demetriou, A., 2007. The effects of different modes of representation on the solution of one-step additive problems. Learning and Instruction, 17, pp.658–672.

Fagnant, A., 2005. The use of mathematical symholism in problem solving: An empirical study carried out in grade one in the French community of Belgium. European Journal of Psychology of Education, XX(4), pp.355–367.

Fuson, K.C. & Willis, G.B., 1989. Second graders’ use of schematic drawings in solving addition and subtraction word problems. Journal of Educational Psychology, 81(4), pp.514–520.

Gamo, S., Sander, E. & Richard, J.-F., 2009. Transfer of strategy use by semantic recoding in arithmetic problem solving. Learning and Instruction, 20(5), pp.400–410.

Gerhard, S., 2009. Problem solving without numbers: An early approach to algebra. In V. Durand-guerrier, S. Soury-Lavergne, & F. Arzarello, eds. Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education. Lyon, France: INSTITUT NATIONAL DE RECHERCHE PÉDAGOGIQUE, pp. 499–508.

Gervais, C., Savard, A. & Polotskaia, E., 2013. La résolution de problèmes de structures additives chez les élèves du premier cycle du primaire : le développement du raisonnement. Bulletin AMQ, 8(3), pp.58–66.

Hegarty, M., Mayer, R.E. & Monk, C.A., 1995. Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of Educational Psychology, 87(1), pp.18–32.

Iannece, D., Mellone, M. & Tortora, R., 2009. Counting vs. measuring: Reflections on number roots between epistemology and neuroscience. In M. Tzekaki & M. Kaldrimidou, eds. Proceedings of the 33rd Conference of the International group for the Psychology of Mathematics Education. Thessaloniki, Greece, pp. 209–216.

Iannece, D., Mellone, M. & Tortora, R., 2010. Early multiplicative thought: a kindergarten path. In M. F. Pinto & T. F. Kawasaki, eds. 34th Conference of the international groupe for the psychology of mathematics education. Belo Horizonte, Brazil, pp. 121–127.

Kaur, B.Y.Æ.B., 2008. Elementary school students engaging in making generalisation : a glimpse from a Singapore classroom. ZDM Mathematics Education, pp.55–64.

Kintsch, W. & Greeno, J.G., 1985. Understanding and solving word arithmetic problems. Psychological review, 92(1), pp.109–29.

Lesh, R. & Zawojewski, J., 2007. Problem solving and modeling. In F. K. J. Lester, ed. Second Handbook of Research on Mathematics Teaching and Learning. IAP, pp. 763–787.

Leung, S.-K.S., 2009. Research efforts on probing students’conceptions in mathematics and in reality: Structuring problems, solving problems, and justifying solutions. In L. Verschaffel, W. Van Dooren, & S. Mukhopadhyay, eds. Words and Worlds. Rotterdam, The Netherlands, pp. 211–223.

Lingefjärd, T., 2011. Modelling from primary to upper secondary school: Findings of empirical research – overview. In G. Kaiser et al., eds. Trends in Teaching and Learning of Mathematical Modelling. International Perspectives on the Teaching and Learning of Mathematical Modelling. Dordrecht: Springer Netherlands, pp. 9–14.

Malara, N.A. & Navarra, G., 2002. Influences of a procedural vision of arithmetics in algebra learning. In CERME. pp. 1–8.

Mellone, M. & Tortora, R., 2012. Designing tales for introducing the multiplicative structure at kindergarten. In Children’s Mathematical Education CME’12. Rzeszów, Poland.

Mellone, M., Verschaffel, L. & Van Dooren, W., 2014. Making sense of word problems: The effect of rewording and dyadic interaction. In P. Liljedahl et al., eds. Proceedings of the 38 th Conference of the International Group for the Psychology of Mathematics Education and the 36 th. Conference of the North American Chapter of the Psychology of Mathematics Education. Mathematical tasks and the student. Vancouver, Canada: PME, pp. 4 – 201–208.

MELS, Quebec, 2001. Programme de formation de l’école québecoise. Éducation prescolaire. Enseignement primaire.

Nesher, P., Greeno, J.G. & Riley, M.S., 1982. The development of semantic categories for addition and subtraction. Educational Studies in Mathematics, 13, pp.373–394.

Ng, S.F. & Lee, K., 2009. The model method: Singapore children’s tool for representing and solving algebraic word problems. Journal for Research in Mathematics Education, 40(3), p.282.

Novotná, J., 1998. Pictorial representation as a means of grasping word problem structures. In Psychology of Mathematics Education 12.

Okamoto, Y., 1996. Modeling Children’s Understanding of Quantitative Relations in Texts : A Developmental Perspective. Cognition and Instruction, 14(4), pp.37–41.

Pape, S.J., 2003. Compare word problems: Consistency hypothesis revisited. Contemporary Educational Psychology, 28(3), pp.396–421.

Polotskaia, E., 2010. Des représentations graphiques dans l’enseignement des mathématiques-Deux jeux pour apprendre. Bulletin AMQ, L(1)(November), pp.12–28.

Polotskaia, E., 2015. How elementary students learn to mathematically analyze word problems: The case of addition and subtraction. McGill University.

Polotskaia, E., Freiman, V. & Savard, A., 2013. Developing reasoning about simple additive structures: one task for elementary students. In A. M. Lindmeier & A. Heinze, eds. Mathematics learning across the life span. The 37th conference of the international group for the psychology of mathematics education. Kiel, Germany, p. 253.

Polotskaia, E. & Savard, A., Reasoning development in solving additive word problems: The relational paradigm. Educational Studies in Mathematics, pp.1–30.

Polotskaia, E., Savard, A. & Freiman, V., 2015a. Duality of mathematical thinking when making sense of simple word problems: Theoretical essay. Eurasia Journal of Mathematics, Science & Technology Education.

Polotskaia, E., Savard, A. & Freiman, V., 2015b. Investigating a case of hidden misinterpretations of an additive word problem: Structural substitution. European Journal of Psychology of Education.

Polya, G., 1945. How to solve it, Princeton, NJ: Princeton University Press.

Riley, M.S. & Greeno, J.G., 1988. Developmental analysis of understanding language about quantities and of solving problems. Cognition and Instruction, 5(1), pp.49–101.

Riley, M.S., Greeno, J.G. & Heller, J.L., 1984. Development of children’s problem-solving ability in arithmetic. In H. P. Ginsburg, ed. The development of mathematical thinking. Orlando, FL: Academic Press, Inc., pp. 153–196.

Savard, A., 2008. Le dévelopement d’une pensée critique envers les jeux de hasard et d'argent par l'enseignement des probabilités à l'école primaire: Vers une prise de décision. Université Laval.

Savard, A. et al., 2013. Tasks to promote holistic flexible reasoning about simple additive structures. In C. Margolinas, ed. Proceedings of ICMI Study 22 Task Design in Mathematics Education. Oxford, England, pp. 271–280.

Savard, A. & Polotskaia, E., 2014. Gérer l’accès aux mathématiques dans la résolution de problèmes textuels : une exploration du côté de l’enseignement primaire. Éducation et francophonie, XLII(2), pp.138–157.

Savard, A. & Polotskaia, E., 2013. Word problem solving task management and students’ access to mathematics: cases in elementary education. In SEMT 2013. Prague, Czech Republic: Czech Republic Charles University, pp. 290–297.

Schmittau, J., 2005. The development of algebraic thinking. A Vygotskian perspective. ZDM Mathematics Education, 37(1), pp.16–22.

Schmittau, J., The Role of Theoretical Analysis in Developing Algebraic Thinking : A Vygotskian Perspective. , 37(1), pp.16–22.

Schmittau, J. & Morris, A., 2004. The development of algebra in the elementary mathematics curriculum of V. V. Davydov. The Mathematics Educator, 8(1), pp.60–87.

Squalli, H., 2007. Le développement de la pensée algébrique à l’école primaire : un exemple de raisonnements à l'aide de concepts mathématiques. , (1997), pp.1–14.

Thevenot, C., 2010. Arithmetic word problem solving: Evidence for the construction of a mental model. Acta psychologica, 133(1), pp.90–5.

Vergnaud, G., 1982. A classification of cognitive tasks and operations of thought involved in addition and subtraction problems. In T. P. Carpenter, J. M. Moser, & T. A. Romberg, eds. Addition and subtraction: A cognitive perspective. Hillsdale, New Jersey: Lawrence Erlbaum Associates, pp. 39–59.

Xin, Y.P., 2012. Conceptual model-based problem solving: Teach students with learning difficulties to solve math problems. In Conceptual Model-Based Problem Solving. SensePublishers, pp. 1–9.

Xin, Y.P., Wiles, B. & Lin, Y.-Y., 2008. Teaching conceptual model-based word problem story grammar to enhance mathematics problem solving. The Journal of Special Education, 42(3), pp.163–178.