Facts to Remember

Unit 1
$$a^n = a \times a \times a \times ... \times a$$
 (*n* times) $a^1 = a$

$$a^0 = 1 a^n \times a^m = a^{n+1}$$

$$a^n \div a^m = a^{n-m} \qquad (a^n)^m = a^{nm}$$

$$a^{-n} = \frac{1}{a^n} \qquad \qquad a^{\frac{1}{n}} = \sqrt[n]{a}$$

Standard form $A \times 10^n$ where $1 \le A < 10$, *n* an integer.

Unit 2
$$(-a) \times b = -ab$$
 $(-a) \times (-b) = ab$

Unit 3 The sum of interior angles in a triangle is 180°.

The sum of interior angles in a quadrilateral is 360°.

Corresponding angles are equal, shown as (a) in diagram.

Alternate angles are equal, shown as (b) in diagram.

Supplementary angles add up to 180° , shown as (c) and (d) in diagram.

Angle around a complete circle is 360°.

Angle around a point on a straight line is 180°.

Bearings $\begin{cases} \text{are always measured clockwise from North.} \\ \text{are expressed as 3 digits.} \end{cases}$

The angle on the perimeter subtended from a diameter of a circle is 90° .

Angle subtended by an arc of a circle at the centre is twice the angle subtended on the perimeter.

Angles subtended at the circumference by a chord, on the same side as the chord, are equal.

In cyclic quadrilaterals (when all four vertices lie on a circle), opposite angles sum to 180° .

The angle between a tangent and a chord equals an angle on the circumference subtended by the same chord.

For two chords, AC and BD, intersecting at X,

$$AX \cdot CX = BX \cdot DX$$
.

Unit 4 Pythagoras' Theorem: $a^2 + b^2 = c^2$

$$\sin x = \frac{\text{opp}}{\text{hyp}}$$
, $\cos x = \frac{\text{adj}}{\text{hyp}}$, $\tan x = \frac{\text{opp}}{\text{adj}}$

Sine Rule:
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Cosine Rule:
$$c^2 = a^2 + b^2 - 2ab\cos C$$

$$\sin 0 = \sin 180^{\circ} = \sin 360^{\circ} = 0$$

Angle	0°	30°	45°	60°	90°	180°	270°	360°
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞	0	∞	0

Unit 5 Sum of all probabilities = 1.

p(event occurring) + p(event not occurring) = 1.

If there are *n* equally likely outcomes, then $p(\text{particular outcome}) = \frac{1}{n}$.

If events A and B are independent, $p(A \text{ and } B) = p(A) \times p(B)$.

If events A and B are mutually exclusive, p(A or B) = p(A) + p(B).

Unit 6 Real numbers are rational or irrational, not both.

Numbers which can be expressed as $\frac{m}{n}$ for integers m and n ($n \neq 0$) are rational numbers.

Decimals are rational numbers, and can be either terminating

(e.g.
$$0.75 = \frac{3}{4}$$
) or recurring (e.g. $0.111... = \frac{1}{9}$).