E	Assume: Previous coverage up to Level 7 Recap: Level 7 Core: Level 8 <i>Extension:</i> Higher Levels <i>MEP Scheme of Work</i>			1	
Hrs	Торіс	Notes	Examples	References	Page
(4)	1. INDICES: STANDARD FORM R: Index notation Prime factors	Positive integer powers only	Simplify $a^5 \times a^3$; $m^4 \div m^2$ Find HCF of 216 and 240		
	C: Indices (including negative and fractional)	With and without calculator	$81^{\frac{2}{3}}$ (with calculator); simplify $\left(\frac{m^2}{n}\right)^{-1}$		
	Standard form		Evaluate $(2.762 \times 10^{-12}) \times (4.97 \times 10^{21})$ (cal.) Evaluate $(2.8 \times 10^4) + (7 \times 10^6)$ (no cal.) Evaluate $(2.8 \times 10^4) \div (7 \times 10^6)$ (no cal.)		
(7)	2. FORMULAE: ALGEBRAIC FR	ACTIONS			
	R: Formation, substitution, change of subject in formulae	With and without calculator Opportunity for revision of negative	Given $q = -2$, $v = 2.1$, find the value of $\sqrt{v^2 - q^2}$.		
		numbers, decimals, simple fractions.	Make <i>L</i> the subject of $t = 2\pi \sqrt{\frac{L}{g}}$		
	C: More complex formulae: – substitution – powers and roots		Given $u = 2$, $v = -3$, find f when $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$		
	 change of subject with subject in more than 1 term 		Make <i>v</i> the subject of $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$		
	Common term factorisation		Factorise $x^3y^4 - x^4y^3 + x^2y$		
	E: Algebraic fractions – addition and subtraction		Simplify $\frac{x}{x+1} + \frac{2x}{2x-1}$		

© CIMT, School of Education, University of Exeter

Ε

MEP Scheme of Work

Hrs	Торіс	Notes	Examples	References	Page
(5)	 3. <u>ANGLE GEOMETRY</u> R: Angle properties of straight lines, points, triangles, quadrilaterals, parallel lines Angle symmetry properties of polygons Symmetry properties of 3–D shapes Compass bearings C: Angle in a semi-circle Radius perpendicular to tangent Radius is perpendicular bisector of chord <i>E:</i> Angles in the same segment are equal Angle at the centre is twice the angle at the circumference. Opposite angles of a cyclic quadrilateral add up to 180°. Alternate segment theorem. Tangents from an external point are equal. Intersecting chords 	Include line and rotational symmetry Include plane, axis and point symmetry 8 compass points and 3 figure bearings Application of Pythagoras and Trig. AX.BX = CX.DX PT ² = PA.PB	Calculate the interior angle of a regular decagon Shade in the diagram so that it has rotational symmetry of order 4 but no lines of symmetry. Describe fully the symmetries of this shape. Scale drawings of 2-stage journeys Calculate the radius. x = ?		

Ε

MEP Scheme of Work

Hrs	Торіс	Notes	Examples	References	Page
(6)	 4. <u>TRIGONOMETRY</u> R: Trigonometry (sin, cos, tan) C: Sine and cosine rules 	Angles of elevation and depression Bearings 2-D with right-angled triangles only Including case with two solutions	Ship goes from A to B on a bearing 040° for 20 km. How far north has it travelled? Find x. Find x. Find x. $x = 55^{\circ}$ Find x. Find 2 solutions for θ .		
	E: Graphs of sin, cos, tan. Solutions of trig equations	Angles of any size	Find x and θ . Solve $\sin x = \frac{1}{2}$ for all x in range $0 \le x \le 720^\circ$.		
(10)	 5. <u>PROBABILITY</u> R: Relative frequency – experimental probability and expected results Appropriate methods of determining probabilities Probability of 2 events Multiplication law for independent events 	Using symmetry, experiment Simple tree diagrams By listing, tabulation or tree diagrams	Experiment to find probability of drawing pin landing point up $p(ace) = \frac{4}{52} = \frac{1}{13}$ There are 5 green, 3 red and 2 white balls in a bag. What is the probability of obtaining (a) a green ball (b) a red ball (c) a non-white ball? Find the probability of obtaining a head on a coin and a 6 on die.		

MEP Scheme of Work

4

Hrs	Торіс	Notes	Examples	References	Page
	C: Addition law for mutually exclusive events		If for class, $p(\text{size 6 feet}) = 0.2$ p(size 7 feet) = 0.3 p(left - handed) = 0.15		
			 (a) Calculate p(size 6 or 7 feet) (b) Explain why p(size 6 feet or left - handed) ≠ 0.2 + 0.15 		
	Conditional probability, dependent events	Sampling without replacement	A bag contains 3 green , 5 red and 8 blue counters. 2 counters are taken from the bag. Find the probability that		
			(i) both counters are the same colour(ii) one is green and the other red.		
	<i>E:</i> Addition Law for non-mutually exclusive events	Using Venn diagrams	Using the class data given above, calculate p(size 6 feet or left - handed) when $p(\text{size 6 feet and left - handed}) = 0.05$		
(7)	6. NUMBER SYSTEM				
	R: Estimating answers		$\frac{29.4 + 61.2}{14.8} \approx \frac{30 + 60}{15} \approx 6$		
	Use of brackets and memory on a calculator		$\frac{2.5 \times 14.3}{7.8 + 2.95} = 3.32558 $ (to 5 d.p.)		
	C: Upper and lower bounds, including use in formulae	Including area, density, speed	9.7 means $9.65 \le x < 9.75$ 100 metres (to nearest m) is run in 9.8 s (to nearest 0.1 s). Give the range of values within which the runner's speed must lie.		
	E: Irrational / rational numbers	Recurring decimals	Give irrational numbers between 5 and 6 Show that (i) 0.09 (ii) 0.16 are rational		
	Surds	Surd form of sin, cos, tan of 30°, 45°, 60°			

© CIMT, School of Education, University of Exeter

MEP Scheme of Work

Hrs	Торіс	Notes	Examples	References	Page
	Addition, subtraction and multiplication of surds	Expansion of two brackets	$(1+\sqrt{2})(1-\sqrt{2})$ If p and q are different irrational numbers, is (i) $p+q$ (ii) pq rational / irrational / could be both?		
(10)	 MENSURATION Difference between discrete and continuous measures Areas of parallelograms, trapezia, kites, rhombuses and composite shapes 	To include estimation of measures.	Illustrate current postal rates; shoe sizes Find the area of this kite. 12.2 m		
	Volumes of prisms and composite solids	Area of cross-section ×length of prism	< <u>4.3 m</u> 1.8 m		
	cubes, cuboids, cylinders				
	Volume/capacity problems	Include compound measures such as density.	Find the mass of water to fill the swimming pool. $3m \frac{1}{6 m} = 20 m$		
	2-D representations of 3-D objects	Use of isometric paper	For plan and side elevation shown, draw an isometric diagram.		
	C: Units	Conversion between m and cm, m^2 and cm^2 , m^3 and cm^3 .			
	Appropriate degree of accuracy	Rounding sensibly for the context and the range of measures used			
	Upper and lower bounds		$l = 9.57 \text{ m} \implies 9.565 \le l < 9.575$		

MEP Scheme of Work

Hrs	Торіс	Notes	Examples	References	Page
	Volume and surface area of a pyramid, cone and sphere and combinations of these (composite solids) Length of circular arc; areas		Calculate the radius of a sphere which has the same volume as a solid cylinder of base radius 5 cm and height 12 cm. Calculate the shaded area		
	of sectors and segments of a circle		5 cm		
	Dimensions	Notation [L] [T] [M]	Which of the following could be volumes? $\pi rl, x^3, ab + cd, \frac{(ab)^2}{b}$ (r, l, x, a, b, c, d, are lengths.)		
	E: Area of triangle $=\frac{1}{2}ab\sin C$		Find the areas of the triangles		
	Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ where $s = \frac{1}{2}(a+b+c)$	Heron's formula	(a) $5 (b) 8 7 (b) 8 7 10 10 10 10 10 10 10 10 10 10 10 10 10 $		
(7)	 BATA HANDLING R: Two-way tables, including timetables and mileage charts 	12 hour and 24 hour clock	If a train arrives at a station at 13:26, and the connection leaves at 14:12, how long do		
	Frequency graphs	For grouped data; equal intervals Include frequency polygons and histograms	you have to wait?		
	C: Construct and interpret histograms with unequal intervals	Understand and use frequency density			
	Frequency polygons Questionnaires and surveys	Fairness and bias			

MEP Scheme of Work

Hrs	Торіс	Notes	Examples	References	Page
	E: Sampling	Random, stratified, systematic, quotas Understand how different methods of sampling and different sample size can affect reliability of conclusions.	Determine number of pupils in each school year to represent their views when the total representation is 20. The numbers of pupils in each year are $\frac{\text{year}}{\text{number}} \begin{array}{c} 7 & 8 & 9 & 10 & 11 \\ \hline 122 & 118 & 100 & 98 & 62 \\ \hline (5) & (5) & (4) & (4) & (2) \end{array}$		
(6)	 9. <u>DATA ANALYSIS</u> R: Problems involving the mean Mean, median, modal class for grouped data C: Cumulative frequency graphs; median, quartiles <i>E: Standard deviation for</i> <i>discrete and grouped/</i> <i>continuous data</i> 	Including discrete and continuous data Including percentiles Inter-quartile and semi-interquartile range Using formulae and statistical mode on calculator. Comparison of mean and st. dev. for 2 sets of data.	The mean of 6 numbers is 12.3. When an extra number is added, the mean changes to 11.9. What is the extra number? Find mean and st. dev. of weights of boys and girls of different ages: compare data and draw conclusions.		
(12)	 10. EQUATIONS R: Linear equations 	One fraction and/or one bracket Algebraic solutions	Solve $2x - 3 = 7$; $3x - 4 = x + 18$ Solve for <i>x</i> to 2 d.p. $x^3 + 7x - 6 = 20$ Multiply out $(2r + 3s)(2r - 5s)$ Solve $2x + y = 5$ x - 4y = 7		

MEP Scheme of Work

Hrs	Торіс	Notes	Examples	References	Page
	Factorisation of functions	Common terms, difference of two squares, trinomials, compound common factor	Factorise (i) $x^4 - 1$ (ii) $x^3 + x^2 + x + 1$ (iii) $2x^2 - x - 3$ Solve (i) $4x^2 - 1 = 0$ (ii) $4x^2 - 9x = 0$ (iii) $x^2 - x = 6$		
	Completing the square	Including max/min values	By completing the square, find the minimum value of $x^2 - 4x + 9$		
	Quadratic formula		Solve $5x^2 - x - 3 = 0$, giving answers to 2 d.p.		
	E: Multiplying and dividing algebraic expressions	Permissable cancelling	Simplify $\frac{x^2 - 9}{x^2 - x - 6}$		
	Equations leading to quadratics; related problems	Including equations from additions or subtractions of algebraic fractions	Solve $\frac{x}{x+1} + \frac{2x}{2x-1} = \frac{39}{20}$		
(4)	11. FRACTIONS and PERCENTAC	TES			
	R: Percentage and fractional changes	Discount, VAT, commission	VAT on hotel bill of £200?		
	C: Compound interest	Repeated proportional change	Find the compound interest earned by £200 at 5% for 3 years.		
	Appreciation and depreciation		A car costs £5,000. It depreciates at a rate of 20% per annum. What is its value after 3 years?		
	Reverse percentage problems		The price of a television is £79.90 including 17.5% VAT. What would have been the price with no VAT?		
(4)	12. NUMBER PATTERNS and SEQR: Find formula for the <i>n</i> th term of a linear sequence.	DUENCES	<i>n</i> th term in sequence 8, 11, 14, 17,,,		

MEP Scheme of Work

Hrs	Торіс	Notes	Examples	References	Page
	 C: Find a quadratic formula for the n th term of a sequence E: Express general laws in symbolic form 		Find <i>n</i> th term for (i) 3, 6, 11, 18,, $(n^2 + 2)$ (ii) 6, 7, 10, 15,, $(n^2 - 2n + 7)$		
(7)	13. GRAPHS R: Graphs in context including conversion and travel graphs (s - t and v - t) and understanding of speed as a compound unit Scatter graphs and lines of best fit	Draw and interpret Gradient and area under graphs for polygon graphs only	Calculate speed between A and B from graph. Name the type of correlations illustrated below. (a) $\begin{bmatrix} x & x^{x} \\ x^{x} & x^{x} \\ x \end{bmatrix}$ (b) $\begin{bmatrix} x \\ x $		
	C: Equation of straight line Graphical solution of simultaneous equations Graphs of common functions Solve equations by graphical methods	Opportunities for use of IT Quadratic, cubic, reciprocal Quadratic, cubic, reciprocal and exponential equations	Find equation of straight line joining points (1, 2) and (4, 11). Use the graph of $y = x^2 - 5x$ to solve $x^2 - 5x = 7$. Draw graphs of $y = x^2 + 5x$ and $y = x^3$ to		
			solve $x^2 + 5x = x^3$. Solve graphically $2^x = 5$. Use the graphs of $y = x^2 - 5x$ and $y = 2x - 3$ to solve $x^2 - 7x + 3 = 0$.		

E	

MEP Scheme of Work

Hrs	Торіс	Notes	Examples	References	Page
(9)	14. LOCI and TRANSFORMATIO	NS: CONGRUENCE and SIMILARITY			
	R: Constructions of loci	About point(s) and line(s)	Construct the locus of points equidistant from both lines.		
	Translation	Using vector notation	Draw image after translation $\begin{pmatrix} -3 \\ 2 \end{pmatrix}$		
	Enlargements	Positive integers and simple fractions	Enlarge diagram by scale		
		for scale factor	factor $\frac{1}{3}$, centre C.		
	C: Enlargements	Negative scale factors Finding the centre of enlargement			
	Reflections	Reflect lines in oblique lines	Reflect these shapes in the given mirror line		
		Reflection in $y = x$, $y = -x$, y = c, $x = c$	(a) (b)		
		Finding the axis of symmetry			
		Describe the mirror line using simple equations.	Equation of mirror line? y		
	Rotation	About any point 90°, 180°, in a given direction. Find the centre of rotation by inspection	$2 \rightarrow x$		
	Combination of two transformations				
	Congruence – conditions for triangles	SSS SAS AAS RHS	A		
	Similarity – similar triangles, line, area and volume ratio	Internal line ratio, e.g. 3:2 in example	$\begin{array}{c} & & & \\ & & & \\ B & & & \\ C & &$		

E	MEP Scheme of Work				
Hrs	Торіс	Notes	Examples	References	Page
			Sudso is available in 800 g and 2.7 kg boxes which are similar in shape. The smaller box uses 150 cm 3 of card. How much card is needed for the larger box?		
(4)	15. VARIATION: DIRECT and INV	VERSE			
	R: Direct and inverse variation		For the following data, is y proportional to x? $\frac{x \mid 3 4 5 6}{y \mid 8 10 12 14}$		
	C: Functional representation	$y \propto x, y \propto x^2, y \propto x^3,$ $y \propto \frac{1}{x}, y \propto \frac{1}{x^2}$	If y is proportional to the square of x and $y = 9$ when $x = 4$, find the positive value of x for		
	Graphical representation		which $y = 25$.		
	E: Further functional representations	y proportional to \sqrt{x} , $\frac{1}{x^3}$, $\frac{1}{\sqrt{x}}$			
(3)	16. INEQUALITIES				
	R: Solution of linear inequalities		Solve for <i>x</i>		
	and simple quadratic inequalities		(a) $5x + 2 < x + 16$ (b) $x^2 \le 25$		
	C: Graphical applications	Locating and describing regions of graphs	Sketch lines $y = x + 1$, $y = 3 - x$ and $x = 2$; hence, shade the region for which y > x + 1, $y < 3 - x$ and $x < 2$		
(6)	17. USING GRAPHS				
	C: Transformation of functions	y = f(x+a), y = f(x) + a $y = k f(x), y = f(kx)$	For given shape of $y = f(x)$, sketch $y = f(x) + 2$, $y = \frac{1}{2}f(2x)$, $y = f(x+1)$		

ς.

MEP Scheme of Work

Hre	Topic	Notos	Fyamples	Dafarancas	Dago
1115	Торк	INDIES	Examples	Kelelentes	I age
	Find the approximate area	Interpretation of area	Estimate the area between the curves $y = x^2 + 1$		
	between a curve and the	Drawing trapezia; trapezium rule	the <i>x</i> -axis and the lines $x = 1$ and $x = 3$.		
	horizontal axis.				
	Construct and use tangents	Including max/min points	A car accelerates so that its velocity is given by		
	to estimate rates of change	Speed from a distance/time graph	the formula $v = 10 \pm 0.3t^2$ Sketch the velocity	1	
		Acceleration and distance from a	time graph for $t = 0$ to $t = 10$, and estimate the		
		velocity/time graph.	distance travelled by the car. Also estimate the acceleration when $t = 5$		
	E: Finding coefficients	Find values of <i>a</i> and <i>b</i> in $y = ax^2 + b$			
		by plotting y against x^2 .			
(4)	18. 3-D GEOMETRY				
	C: Length of slant edge of pyramid	Producing 2-D diagrams from 3-D problems	ABCDE is a regular square based pyramid of vertical height 10 cm and base, BCDE, of side 4 cm. Calculate		
	Diagonal of a cuboid		(i) the slant height of the pyramid		
	Angles between two lines,	Pythagoras, sine and cosine rules	(ii) the angle between the line AB and the base		
	a line and a plane, two planes		(iii) the angle between one of the triangular faces and the square base.		
(6)	19. <u>VECTORS</u>				
		$(a) \rightarrow$			
	C: Vectors and scalars	Vector notation $\begin{pmatrix} b \end{pmatrix}$, AB or a			
	Sum and difference of vectors				
	Resultant vectors		A plane is flying at 80 m/s on a heading of 030°. However, a wind of 15 m/s is blowing from the west. Determine the actual velocity (speed and bearing) of the plane.		

Ε	MEP Scheme of Work				
Hrs	Торіс	Notes	Examples	References	Page
	Components Multiplication of a vector by a scalar Applications of vector methods to 2-dimensional geometry		$\vec{AE} = \vec{ED} = \mathbf{a} \text{ and } \vec{AB} = \mathbf{b}$ Write down, in terms of \mathbf{a} and \mathbf{b} , (i) \vec{CE} (ii) \vec{CD} (iii) \vec{DB}		
	E: Know and use commutative and associative properties of vector addition				