

2A Decimals

Help Booklet

Support for Primary Teachers in Mathematics

Primary Project funded by Pricewaterhouse Coopers

in association with British Steel Garlield Weston Foundation Sponsored by

CIMT School of Education University of Exeter

Mathematics Enhancement Programme

Help Module 2

DECIMALS

Part A

Contents of Part A

Preface Introductory Notes Worked Examples and Exercises Answers

Contents of Part B Preface Activities Tests Answers

Sponsored by ESSO

PREFACE

This is one of a series of *Help Modules* designed to help you gain confidence in mathematics. It has been developed particularly for primary teachers (or student teachers) but it might also be helpful for non-specialists who teach mathematics in the lower secondary years. It is based on material which is already being used in the *Mathematics Enhancement Programme: Secondary Demonstration Project*.

The complete module list comprises:

1.	ALGEBRA	6.	HANDLING DATA
2.	DECIMALS	7.	MENSURATION
3.	EQUATIONS	8.	NUMBERS IN CONTEXT
4.	FRACTIONS	9.	PERCENTAGES
5.	GEOMETRY	10.	PROBABILITY

Notes for overall guidance:

- Each of the 10 modules listed above is divided into 2 parts. This is simply to help in the downloading and handling of the material.
- Though referred to as 'modules' it may not be necessary to study (or print out) each one in its entirely. As with any self-study material you must be aware of your own needs and assess each section to see whether it is relevant to those needs.
- The difficulty of the material in **Part A** varies quite widely: if you have problems with a particular section do try the one following, and then the next, as the content is not necessarily arranged in order of difficulty. Learning is not a simple linear process, and later studies can often illuminate and make clear something which seemed impenetrable at an earlier attempt.
- In **Part B**, **Activities** are offered as backup, reinforcement and extension to the work covered in Part A. **Tests** are also provided, and you are strongly urged to take these (at the end of your studies) as a check on your understanding of the topic.
- The marking scheme for the revision test includes B, M and A marks. Note that:

M	marks	are for method;
A	marks	are for accuracy (awarded only following
		a correct M mark);
B	marks	are independent, stand-alone marks.

We hope that you find this module helpful. Comments should be sent to:

Professor D. N. Burghes CIMT, School of Education University of Exeter EXETER EX1 2LU

The full range of Help Modules can be found at www.ex.ac.uk/cimt/help/menu.htm

2 Decimals

Introductory Notes

Historical Background

While visiting North Africa, *Leonardo of Pisa* (about 1170-1250), known as *Fibonacci*, learned from the Arabs about a number system which they had seen used by the Hindus in India. He returned to Pisa in 1202 and published a book called *Liber Abaci* which introduced the Arabic number system to Europe. This number system, now known as the decimal system, uses the ten symbols 0 to 9 and place value to represent numbers of any size. The system makes it possible for pupils in schools today to carry out calculations which were beyond the capabilities of learned mathematicians of Greek, Roman and medieval times.

Early number systems were based on, for example, 60 (Babylonian) or

12 (Roman) so that 2.3'5" would mean $2 + \frac{3}{12} + \frac{5}{144}$.

Decimal notation was introduced in the 16th and 17th centuries, with the Dutch engineer, *Simon Stevehus*, in 1585 using

25 (0) 3 (1) 7 (2) 9 (3) to mean 25.379

and the Scottish mathematician, John Napier, using the notation

25, 3'7"9" for 25.379.

Nowadays, most systems of measurement are based on a decimal system, although time is still measured using 60 as the base and in this country we continue to use miles and feet for distance.

Key Issues

Introduction

- A good starting point for looking at decimals and the number line is a ruler marked in centimetres and millimetres.
- When reading decimal numbers the figures after the decimal point are read separately.

e.g. 32.45 is read as thirty-two point four five, **not** thirty-two point forty-five, because the 4 is 4 tenths not 4 tens, and the 5 is 5 hundredths not 5 units.

• You need to be aware that multiplying and dividing numbers by powers of ten has the effect of moving the numbers into different columns. It may be helpful to use column headings

... Th H T U
$$\frac{1}{10}$$
 $\frac{1}{100}$ $\frac{1}{1000}$...

initially when considering this.

Language / Notation

• The correct notation for writing amounts of money needs to be emphasised. Common errors include writing

£3.4	instead of	£3.40
£2.57 p	instead of	£2.57
£0.53 p	instead of	53 p

- When writing numbers, spaces are now used instead of commas between thousands.
 - e.g. 2 300 not 2,300 and 6 000 000 not 6,000,000

Misconceptions and Misunderstandings

• Decimals and their fraction equivalents are essentially the same number.

e.g. 0.25, $1 \div 4$, $\frac{1}{4}$, $\frac{2}{8}$ are all the same number.

i.e. they are all at the same point on a number line.

- Decimals such as 3.4, 3.40 and 3.400 are essentially the same number.
- Rounding a number to a specified number of significant figures should not be done term by term the whole number should be considered.
 - e.g. 13456 to 2 s.f. is clearly 13000, since 13456 is closer to 13000 than 14000;

but if you round term by term,

13456	\Rightarrow	13460 to 4 s.f.
	\Rightarrow	13500 to 3 s.f.
	\Rightarrow	14000 to 2 s.f.

which is not correct.

WORKED EXAMPLES and EXERCISES

Section	Subject	Page
2.1	Introduction	1
2.2	Multiplying and Dividing with Decimals	6
2.3	Fractions and Decimals	9
2.4	Long Multiplication and Division	14
2.5	Estimating Answers	16
2.6	Using Brackets and Memory on a Calculator	19
	Answers to Exercises	25

2 Decimals

2.1 Introduction

The use of numbers involving decimal points is very important. Recall that:

l'in

Worked Example 1

Read the value indicated by each pointer.

Solution

(a) Each mark on the scale is 0.1 units apart, so the arrow points to 3.7.

(b) Each mark on the scale is 0.2 units apart, so the arrow points to 4.6.

- (c) Each mark on the scale is 0.01, so the arrow points to 3.83.
- (d) Each mark on the scale is 0.02 units apart, so the arrow points to 3.82.

(i)

Worked Example 2

Find

(a)
$$0.17 + 0.7$$
 (b) $0.624 + 0.41$ (c) $0.12 + 0.742$

Solution

(-)	0.17	(1-)	0.624		0.12	
(a)	+ 0.7	(D)	+ 0.41	(C)	+ 0.742	
	0.87		1.034		0.862	

Note how the decimal points are lined up above each other.

Worked Example 3

A boy spent 48 p on football stickers, 33 p on sweets and 95 p on a comic. Find the total he spent in \pounds s.

Solution

	48
	33
+	95
	176

He spent 176 p or £1.76.

Write each of these as a decimal.

Exercises

1.

	(a)	$\frac{7}{10}$	(b)	$\frac{8}{10}$	(c)	$\frac{3}{10}$
	(d)	$\frac{5}{100}$	(e)	$\frac{21}{100}$	(f)	$\frac{42}{100}$
	(g)	$\frac{5}{1000}$	(h)	$\frac{151}{1000}$	(i)	$\frac{22}{1000}$
	(j)	$\frac{8}{100}$	(k)	$\frac{13}{100}$	(1)	$\frac{16}{1000}$
	(m)	$\frac{5}{10}$	(n)	$\frac{4}{100}$	(0)	$\frac{321}{1000}$
2.	Write	e each of these as a	fractio	n.		
	(a)	0.4	(b)	0.3	(c)	0.04
	(d)	0.32	(e)	0.45	(f)	0.06
	(g)	0.08	(h)	0.14	(i)	0.008
	(j)	0.147	(k)	0.036	(1)	0.04
	(m)	0.1	(n)	0.009	(0)	0.107

Information

The sides of the Great Pyramid of Giza in Egypt are about 230.5 m long. Although it was built thousands of years ago by thousands of slaves, the lengths of its sides vary by no more than 11.5 cm!

2.1 In each number below, does the 5 represent 6. 5 tenths, 5 hundredths or 5 thousandths? (a) 0.152 (b) 0.522 (c) 0.05 (d) 3.572 (e) 1.475 (f) 3.115 7. The table below shows how five children spent pocket money in one week. Child **Sweets Stickers** Toys Magazines/Comics 70 p 80 p Hester 84 p 24 p Katie 25 p 80 p 49 p _ Relah 16 p 48 p 99 p 65 p Hien 86 p 48 p 42 p 99 p Find the total that each child spent in 2 weeks. (a) Find the amount that the four children spent together in one week. (b) How much did they spend on sweets in one week? (c) 8. Convert the following amounts in pence to £s. (a) 328 p 152 p (b) (c) 842 p 48 p (d) 1121 p (e) (f) 127 p 64 p 32 011 p 8421 p. (g) (h) (i) 9. Mr Krishnan buys five 20 p stamps and three 26 p stamps. (a) How much does he spend in £'s? (b) How much change would he get from a £5 note? 10. The cost of travelling by bus from Mrs Barnes' home to the city centre is £1.10 for adults and 65 p for children. (a) Find the cost if Mrs Barnes goes to the city centre with her two children. (b) Find the cost if Mr Barnes also goes. Jackie measures her height. 11. How tall is she? 1.90 -(LON)

5

Multiplying and Dividing With Decimals

When multiplying or dividing by 10, 100, 1000, etc. the decimal point can simply be moved to the left or the right. When numbers such as 20, 200 or 300 are involved, the numbers can be multiplied by 2 or 3 and then the decimal point can be moved the correct number of places.

1'in

Worked Example 1

Find

(a) 362×100 (b) 4.73×10 (c) $576 \div 10$ (d) $4.2 \div 1000$

Solution

(a) To multiply by 100 move the decimal point 2 places to the right.

To do this it is necessary to add two zeros to the number. So

$$362 \times 100 = 362.00 \times 100$$

$$= 36\ 200$$
.

(b) To multiply by 10, move the decimal point one place to the right. So

 $4.73 \times 10 = 47.3$.

(c) To divide by 10, move the decimal point one place to the left. So

 $576 \div 10 = 57.6$.

(d) To divide by 1000 move the decimal point three places to the left. To do this it is necessary to put some extra zeros in front of the number.

 $4.2 \div 1000 = 0.0042.$

1 in

Worked Example 2

Find:

(a)	3.4×20	(b)	$\frac{14.8}{20}$	(c)	$\frac{42}{0.7}$

Solution

(a) First multiply the 3.4 by 2 to give 6.8. Then multiply the 6.8 by 10 to give 68; so

$$3.4 \times 20 = 3.4 \times 2 \times 10$$

= 6.8 × 10
= 68.

(b) First divide 14.8 by 2 to give 7.4. Then divide by 10 to give 0.74.

$$\frac{14.8}{20} = \frac{7.4}{10} = 0.74$$

2.2							
	(c)	First make	multiply both nute the calculation e	mbers by easier. Th	7 10 so that the 0.7 hen divide 420 by	7 becom 7 to giv	es a 7. This will ye 60.
					$\frac{42}{0.7} = \frac{420}{7}$		
					= 60.		
1.00.1	Ex	ercis	ses				
	1.	Find					
		(a)	4.74×10	(b)	6.32 × 100	(c)	41.6 ÷ 10
		(d)	12.74×100	(e)	16.58 ÷ 100	(f)	32.4 ÷ 10
		(g)	6.3 × 100	(h)	4.7×1000	(i)	$3.2 \times 10\ 000$
		(j)	47×1000	(k)	6.8 ÷ 1000	(1)	82 ÷ 100
		(m)	192 ÷ 1000	(n)	14 ÷ 1000	(0)	0.18×1000
	2.	Find					
		(a)	1.8×20	(b)	4.7×300	(c)	15×700
		(d)	66×2000	(e)	15×400	(f)	1.3×8000
		(g)	66 ÷ 20	(h)	74 ÷ 200	(i)	21 ÷ 3000
		(j)	35 ÷ 5000	(k)	3.42 ÷ 20	(1)	$52 \div 400$
		(m)	18.1×600	(n)	47.2×500	(0)	4.95 ÷ 50
		(p)	3×0.02	(q)	15×0.04	(r)	5×0.0007
	3.	Find					
		(a)	$\frac{16}{0.4}$	(b)	$\frac{500}{0.2}$	(c)	$\frac{64}{0.8}$
		(d)	$\frac{24}{0.04}$	(e)	$\frac{264}{0.02}$	(f)	$\frac{465}{0.15}$
		(g)	$\frac{156}{0.03}$	(h)	$\frac{48}{0.012}$	(i)	$\frac{56}{0.08}$
	4.	A fac	ctory produces wa	ashers wl	hich it sells at 1.2	pence e	ach.
		(a)	Find the income	e in penc	e from the sale of		
			(i) 300 wash	iers	(ii) 50000 wa	ashers	(iii) 4000 washers.
		(b)	Convert your an	nswers to	(a) from pence to	o pounds	5.
		(c)	£3600 was paid batch?	for a ba	tch of washers. H	Iow man	y washers were in this

5. A company made a large profit one year and decided to give a bonus to each department. The bonus was divided equally among all the staff in each department.

Department	Total Bonus	Number of staff
Production	£12 487	100
Sales	£8 260	20
Delivery	£5 350	50
Finance	£4 896	40

Find the bonus that would be paid to staff in each department.

- 6. A snail moves at a speed of 0.008 miles per hour.
 - (a) How far would the snail travel in 1.5 hours?
 - (b) How long would it take the snail to travel:
 - (i) 40 miles (ii) 0.72 miles?

7. The cost of making a chocolate bar is 2.7 pence.

- (a) What is the cost of producing:
 - (i) 4000 (ii) 17 000 (iii) 30 000 chocolate bars?

(b) A consultant says that he can reduce the production costs by 0.4 pence per bar. How much would this save on the production of:

(i) 5 000 (ii) 22 000 (iii) 30 000 chocolate bars?

8. A new pop group are trying to produce their first CD.

- (a) They are told that it will cost £1.20 to make each CD. If they can afford to spend £1800 on producing the CDs, how many can they make?
- (b) One of the group find another CD manufacturer who will manufacture the CDs for 90 pence each. How many more can they produce at this price?
- 9. It is established that a lorry can carry 64000 cans of soft drinks. Each can contains 0.33 litres of drink.

Find the total volume of the drink carried by the lorry.

- 10. For a major sporting event, a stadium is expected to hold its limit of 70 000 spectators.
 - (a) How much money is taken in ticket sales if the price of the tickets were:
 - (i) £5 (ii) £8 (iii) £11?
 - (b) If £432 000 is taken in ticket sales when the ticket price is £6, how many spectators will not be able to get into the ground?

2.2			
	11.	(a)	900 \times 0.6
			Work out the answer to this sum in your head. Do not use a calculator.
			Explain clearly the method you used.
		(b)	$\boxed{40 \div 0.8}$
			Work out the answer to this sum in your head. Do not use a calculator.
			Explain clearly the method you used.
			(NEAB)
	12.	(a)	Multiply 65 by 100.
		(b)	Write the number one thousand and thirty seven in figures.
		(c)	Add your answer for part (b) to your answer for part (a). (MEG)
	13.	Fill i	n the missing numbers.
		(a)	$7 \times 100 = 2 0$ (b) $0 \times 30 = 80$
			(<i>NEAB</i>)
	14.	(a)	Write down the value of:
			(i) 2×9 (ii) 9×9 .
		(b)	Use your answers in part (a) to calculate the value of 29×9 , showing your working in full.
			(MEG)

2.3 Fractions and Decimals

Some fractions can be written as decimals with a fixed number of decimal places, for example:

$$\frac{1}{4} = 0.25$$

These are called *terminating* decimals. Others have an infinite number of decimal places, for example:

$$\frac{1}{3} = 0.333\,333\ldots$$

Numbers that contain an infinite number of decimal places are usually rounded to a specified number of significant figures or decimal places.

1 in

Worked Example 1

Round each number in the list below to:

	(i)	3 significant figures		(ii)	3 dec	imal places.
(a)	4 732.165	(b)	4.736 1		(c)	417.923 5
(d)	0.056 234	(e)	0.004 721			

2.3			
	So	lutio	n
	(a)	(i)	4732.165 = 4730 to 3 significant figures. Note that only the first 3 figures are considered.
		(ii)	4732.165 = 4732.165 to 3 decimal places. There is no charge as there are exactly 3 figures behind the decimal point.
	(b)	(i)	4.7361 = 4.74 to 3 significant figures. The first three figures are considered and the 3 is rounded up to a 4, because it is followed by a 6.
		(ii)	4.7361 = 4.736 to 3 decimal places. The 6 is not rounded up because it is followed by a 1.
	(c)	(i)	417.9235 = 418 to 3 significant figures. The first 3 figures are used and the 7 is rounded up to 8 because it is followed by a 9.
		(ii)	417.9235 = 417.924 to 3 decimal places. There are three figures behind the decimal point and the 3 is rounded up to a 4 because it is followed by a 5.
	(d)	(i)	$0.056\ 234 = 0.056\ 2$ to 3 significant figures. Note that the zeros at the start of this number are not counted.
		(ii)	$0.056\ 234 = 0.056$ to 3 decimal places.
	(e)	(i)	$0.004\ 721 = 0.004\ 72$ to 3 significant figures. Note that the zeros in front of the 4 are not counted.
		(ii)	$0.004\ 721 = 0.005$ to 3 decimal places. The 4 is rounded up to a 5 because it is followed by a 7.
(i)	Wo	orked	Example 2
	Con	vert ea	ch of the following fractions to decimals,
	(a)	$\frac{1}{4}$	(b) $\frac{2}{3}$ (c) $\frac{4}{5}$ (d) $\frac{3}{7}$

Solution

In each case the bottom number should be divided into the top number. This will require long division.

(a)	To convert $\frac{1}{4}$, divide 4 into 1.	
		0.25
		4 1.00
		8
		2 0
		2 0
		0
	So $\frac{1}{4} = 0.25$.	

10

2.3 (b) To convert $\frac{2}{3}$, divide 3 into 2. $\begin{array}{c} 0.6666\ldots\\ \underline{3} \quad 2.000\\ \underline{18} \end{array}$ 20 18 2 So $\frac{2}{3} = 0.666 6... = 0.667$ to 3 decimal places. (c) To convert $\frac{4}{5}$, divide 5 into 4. 0.8 5 4.0 4 0So $\frac{4}{5}$ is exactly 0.8. (d) To convert $\frac{3}{7}$ into a decimal divide 7 into 3. 0.42857... $\begin{array}{c|c}
\underline{7} & 3.0 & 0 & 0 & 0 \\
\underline{2} & 8 \\
\underline{2} & 0
\end{array}$ 14 60 56 40 $\frac{35}{50}$ $\frac{49}{1}$ There will be an infinite number of decimal places in this case, but

$$\frac{3}{7} = 0.428$$
 6

correct to 4 decimal places.

Just for Fun

Without moving 6 adjacent numbers of the face of a clock, rearrange the other six so that the sum of every pair of adjacent numbers is a prime number.

Ev	orcia	202							
		503							
1.	Write	e each of	the follow	ving nu	mbers	correc	et to:		
		(i) 2	decimal	places		(ii)	2 sig	nificai	nt figures.
	(a)	18.643		(b)	1 024	4.837		(c)	16.04
	(d)	181.435	5	(e)	16.82	24		(f)	0.083 741
	(g)	0.009 5	62	(h)	4.83′	75		(i)	3.864 9
2.	Write	e the num	ber 48 63	37.012	45 co	rrect to)		
	(a)	3 signif	ïcant figu	res		(b)	2 dec	imal p	places
	(c)	4 decim	nal places			(d)	4 sig	nificaı	nt figures
	(e)	3 decim	nal places			(f)	2 sig	nificaı	nt figures.
3.	Write speci	e each nu fied.	mber corr	ect to t	he nun	nber of	f decim	nal pla	ces or significant figure
	(a)	0.00472	2 (2 s.f.)	(b)	48.2	34 (3 s	.f.)	(c)	15.83 (1 s.f)
	(d)	4.862 (2	2 d.p.)	(e)	18.4	15 (2 d	l.p.)	(f)	21.804 (2 d.p.)
	(g)	14862 (2 s.f.)	(h)	0.004	463 (3	d.p.)	(i)	0.004178 (3 s.f.)
	(j)	15682 ((3 s.f.)	(k)	5463	1 (2 s.	f.)	(1)	31.432 (3 s.f.)
	(m)	14.176	(4 s.f.)	(n)	0.81	5 (2 s.f	f.)	(0)	1.84149 (3d.p.)
	(p)	15.013	(3 s.f.)	(q)	14.1′	704 (3	d.p.)	(r)	201.04 (3 s.f.)
4.	The	number o	f spectato	rs that	enter a	footb	all grou	und fo	r a big match is 44 851.
	(a)	Write th	nis numbe	r corre	ct to 1,	2, 3 a	nd 4 si	gnifica	ant figures.
	(b)	Which	of your an	swers	to (a) r	nakes	the nur	nber c	of spectators appear
		(i) tl	he largest	-	(ii)	the s	malles	t?	
5.	Each fracti	of the fra ion as a d	actions be ecimal.	low car	n be w	ritten a	as a ter	minati	ng decimal. Write each
	(a)	$\frac{1}{2}$		(b)	$\frac{3}{4}$			(c)	$\frac{2}{5}$
	(d)	$\frac{3}{5}$		(e)	$\frac{1}{8}$			(f)	$\frac{5}{8}$
		2			7				1

Blaise Pascal (1623–1662) invented and made the first calculating machine at the age of 18 years.

2.3
6. Write each of he following fractions as a decimal correct to 4 decimal places:
(a)
$$\frac{1}{3}$$
 (b) $\frac{1}{6}$ (c) $\frac{4}{7}$
(d) $\frac{1}{7}$ (c) $\frac{5}{7}$ (f) $\frac{5}{6}$
7. (a) Write $\frac{1}{9}, \frac{2}{9}, \frac{4}{9}$ and $\frac{5}{9}$ as decimals correct to 5 decimal places.
(b) Describe any patterns that you notice in these decimals before they are rounded.
(c) How would you expect $\frac{7}{9}$ and $\frac{8}{9}$ to be written as decimals? Check your answers.
8. (a) Write $\frac{1}{11}, \frac{2}{11}, \frac{3}{11}$ and $\frac{4}{11}$ as decimals correct to 5 decimal places.
(b) By looking at any patterns that you observe, write down
 $\frac{5}{11}, \frac{6}{11}, \frac{7}{11}, \frac{8}{11}, \frac{9}{11}$ and $\frac{10}{11}$
as decimals.
(c) Check your answers for $\frac{7}{11}$ and $\frac{10}{11}$ by division.
9. Write down two different numbers that are the same when rounded to:
(a) 2 decimal places and 2 significant figures,
(b) 3 decimal places and 2 significant figures,
(c) 1 decimal places and 2 significant figures,
(d) 4 decimal place and 8 significant figures.
10. (a) Change $\frac{4}{5}$ to a decimal.
(b) Write these numbers in order of size. Start with the smallest.
 $0.805, 0.85, \frac{4}{5}, 0.096,$ (SEG)
11. P
(a) Mark with an X a point approximately $\frac{1}{3}$ of the way along the line from P.
(b) Mark with a Z a point approximately 0.75 of the way along the line from P.
(LOW)

2.4 Long Multiplication and Division

This section revises long multiplication and long division. These techniques will be useful when estimating and checking more complex calculations with decimal numbers.

l'ij	

Worked Example 1

Find					
(a)	127×24	(b)	146 ×	< 137	
Solu	ution				
(a)		127 × 2	$L \rightarrow$	$ \begin{array}{r} 127 \\ \times 24 \\ \hline 508 \\ 2540 \end{array} $	$\leftarrow 127 \times 4$ $\leftarrow \text{ Insert 0}$
(a)				3048 146 $\times 137$ 1022	
		146 × 3 146 × 1	$3 \rightarrow 1 \rightarrow 1$	1 0 2 2 4 3 8 0 1 4 6 0 0 2 0 0 0 2	$\leftarrow 146 \times 7$ $\leftarrow \text{ Insert 0}$ $\leftarrow \text{ Insert 00}$
Wo	rked Exampl	e 2			
Find					

(a) $1675 \div 5$ (b) $312 \div 13$

-

(1)

Solution

(a)

(b)

335 $5\overline{1675}$ $15 \quad \leftarrow 3 \times 5$ $15 \quad \leftarrow 3 \times 5$ $25 \quad \leftarrow 3 \times 5$ $25 \quad \leftarrow 5 \times 5$ $26 \quad \leftarrow 2 \times 13$ 52 $26 \quad \leftarrow 4 \times 13$ 0

Exercises

You should not use a calculator for these questions.

1.	(a)	$15 \times 23 =$	(b)	18×38=	(c)	19×27 =
	(d)	64×142 =	(e)	28×261=	(f)	48×321=
	(g)	52 × 49 =	(h)	128×15=	(i)	324 × 72 =
	(j)	84×121=	(k)	56×42 =	(1)	38×147 =
	(m)	212×416=	(n)	58×2312 =	(0)	4718×12 =
2.	(a)	760 ÷ 5 =	(b)	762 ÷ 3 =	(c)	$1038 \div 6 =$
2.	(a) (d)	$760 \div 5 =$ 1004 ÷ 4 =	(b) (e)	$762 \div 3 =$ 1356 ÷ 3 =	(c) (f)	$1038 \div 6 =$ 2996 ÷ 7 =
2.	(a) (d) (g)	$760 \div 5 =$ $1004 \div 4 =$ $1476 \div 12 =$	(b) (e) (h)	$762 \div 3 =$ $1356 \div 3 =$ $490 \div 14 =$	(c) (f) (i)	$1038 \div 6 =$ $2996 \div 7 =$ $228 \div 19 =$
2.	(a) (d) (g) (j)	$760 \div 5 =$ $1004 \div 4 =$ $1476 \div 12 =$ $768 \div 24 =$	(b) (e) (h) (k)	$762 \div 3 =$ $1356 \div 3 =$ $490 \div 14 =$ $432 \div 18 =$	(c) (f) (i) (l)	$1038 \div 6 =$ 2996 ÷ 7 = 228 ÷ 19 = 3366 ÷ 22 =

- 3. Calculators are packed in boxes of 16. A shop receives 22 boxes of calculators and sells them for £6 each. How much money would the shop take if it sold all the calculators?
- 4. In a school every class has 28 pupils. If there are 25 classes in the school, what is the total number of pupils?
- 5. A sports supplier donates 156 footballs to a group of 12 schools. The balls are divided equally between the schools. How many footballs does each school get?
- 6. A delivery van contains 14 sacks of potatoes. Each sack has a mass of 25kg. Find the total mass of the potatoes.
- 7. A group of 6 people win £2000 in a competition. They share the prize out equally. Find the amount each person gets to the nearest penny.
- 8. The students who attended a sports training course are split into 16 groups. How many students are there in each group if:
 - (a) 208 students attend (b) 112 students attend?

A maximum of 15 students can be put in every group. What is the maximum number of students that can attend the course?

- 9. Cassette tapes are sold in packets of 15 which cost £11. John wants to buy 200 tapes. How much must be spent to get the 200 tapes?
- 10. A salesman travels an average of 742 miles per week. How far would he expect to travel in a year if he has:
 - (a) 4 weeks holiday (b) 6 weeks holiday?

2.4		
	11.	Do not use your calculator in this question. Show all your working.
		A school is planning a disco for 936 pupils. Each pupil will be given 1 can of drink. Cans of drink are sold in trays of 24.
		Work out how many trays of drink will be needed.
		(LON)
	12.	Do not use your calculator in this question.
		 (a) A travel company takes a party of people to a hockey match at Wembley. 17 coaches are used. Each coach has seats for 46 passengers. There are twelve empty seats altogether. How many people are in the party?
		Write down all your working to show you do not use a calculator.
		(b) 998 football supporters use another travel company to go to a football match at Wembley. Each coach has seats for 53 passengers.
		(i) How many coaches are needed?
		Write down all your working to show you do not use a calculator.
		(ii) How many empty seats are there?
		(NEAB)
2.5	Es	stimating Answers

If you do a calculation such as

$$\frac{4.1721 \times 3.846}{18.21 + 5.73}$$

you need to use a calculator to find the answer. This section looks at ways of estimating the answers to calculations such as this.

Worked Example 1

Estimate the answers to each of the following problems.

(a) 18.42×3.76 (b) $\frac{47.932}{4.071}$ (c) $\frac{18.51 + 11.23}{3.0712}$

Solution

Estimates can be obtained by using each number correct to 1 or 2 significant figures.

(a)
$$18.42 \times 3.76 \approx 20 \times 4$$
 (b) $\frac{47.932}{4.071} \approx \frac{48}{4} \approx 80 \approx 12$

(c)
$$\frac{18.51 + 11.23}{3.0712} \approx \frac{20 + 10}{3}$$

 $\approx \frac{30}{3}$
 ≈ 10

Exercises

1. Write each of the following numbers correct to 1 significant figure.

(a)	47.316	(b)	18.45	(c)	27.65
(d)	9.632	(e)	15.01	(f)	149.32
(g)	62.84	(h)	0.176	(i)	0.039 4
(j)	1.964	(k)	21.87	(1)	1.849

2. Estimate the answers to the following problems:

(a)	6.74×8.31	(b)	4.35×12.46	(c)	236×4.321
(d)	16.67 × 3.21	(e)	5.92×105.3	(f)	16.78×32.51
(g)	$\frac{192.7}{17.35}$	(h)	$\frac{284}{37.2}$	(i)	$\frac{963}{51.8}$
(j)	$\frac{47.63}{0.4185}$	(k)	$\frac{36.72}{8.26}$	(1)	$\frac{17.24}{0.374}$

Now find the answer to each problem using a calculator, giving your answer to 4 significant figures. In each case compare your answers and estimates.

3. Estimate the answers to each of the following calculations.

(a)	$\frac{6.6 \times 9.5}{32.4}$	(b)	$\frac{0.32 \times 8.43}{6.21}$	(c)	$\frac{12.8 + 45.3}{17.3}$
(d)	$\frac{33.6+77.9}{15.72}$	(e)	$\frac{888 + 723}{38.4}$	(f)	$\frac{560 + 2.01}{29.47}$
(α)	16.5×3.82	(b)	82.4 + 91.9	(i)	82.6 × 19.41

(g)
$$\frac{100-100}{4.162}$$
 (h) $\frac{100-100}{1.04+1.43}$ (i) $\frac{100-100}{0.024\times405}$

- 4. When cars leave a factory they are parked in a queue until they are delivered. The length of each car is 4.32 m. A queue contains 54 cars.
 - (a) Estimate the length of the queue, if there are no gaps between the cars.
 - (b) Find the length of the queue if there are no gaps between the cars.
 - (c) If there is a gap of 0.57 m between each car, estimate the length and find the actual length.
- 5. A cross-country runner has an average speed of 6.43 m s^{-1} .
 - (a) Estimate and find the distance run in 200 seconds, if he runs at his average speed.
 - (b) Estimate and find, to 3 significant figures, the time it takes him to run 1473 m.

6.	Drivers at a motor racing circuit complete practice laps in times of 130.21, 131.43 and 133.62 seconds. The length of the circuit is 5214 metres.
	(a) Estimate the average speed of the drivers.
	(b) Find their speeds correct to 2 decimal places.
7.	A car travels 12.43 km on 1.12 litres of petrol.
	(a) Estimate and then calculate the distance that the car would travel on 1 litre of petrol.
	(b) Estimate the distances that the car would travel on 41.1 litres and 33.8 litres of petrol.
8.	A factory produces 108 portable CD players every day. The cost of producing the CD players is made up of $\pounds 4$ 125 for labour costs and $\pounds 2$ 685 for parts.
	Estimate and then calculate:
	(a) the total cost of producing a CD player,
	(b) the cost of the parts to make a CD player,
	(c) the cost of the labour to make a CD player.
9.	Carpet tiles are made so that they are square with sides of length 48 cm.
	Estimate and then calculate the number of tiles needed for rooms with sizes:
	(a) 6.41 m by 3.28 m (b) 3.84 m by 2.91 m (c) 4.29 m by 4.62 m.
10.	(a) Write down the numbers you could use to get an approximate answer to
	59 imes 32.
	(b) Write down your approximate answer.
	(c) Using a calculator find the difference between your approximate answer and the exact answer.
	(LON)
11.	Flour costs 48 p per kilogram. Brett bought 205 kg and shared it equally among 14 people. He calculated that each person should pay £0.72.
	Without using a calculator, use a rough estimate to check whether this answer is about the right size.
	You must show all your working.
Inv	estigation
A m	an died leaving behind 23 cows to his three children. His will stated that the eldest child

should have half of the fortune, the second child should have one third and the youngest one eighth . The childrens could not decide how to divide up the cows without it being necessary to kill any of them.

A wise man came to the scene. He brought along his only cow and put it with the other 23 cows to give a total of 24 cows. He gave half of the 24 cows (12) to the eldest child, one third of the 24 cows (8) to the second child and one eighth of the 24 cows to the youngest child. He then took his own cow back. Can you discover the clue to this solution?

2.6 Using Brackets and Memory On a Calculator

By using the bracket and memory keys on a calculator it is possible to carry out tasks fairly quickly and easily.

Some of the standard memory keys which are found on a calculator are:

Min Places the current number into the memory, replacing any previous number.

Clears the memory.

Adds the number displayed to the memory.

R Recalls the number that is currently in the memory.

Brackets can be used to tell the calculator the order in which to do calulations.

For example, to find:

$$\frac{3.62 + 4.78}{3.9 - 1.4}$$

use

 $(3 \cdot 6 \cdot 2 + 4 \cdot 7 \cdot 8 \cdot) \div (3 \cdot 9 - 1 \cdot 4 \cdot) =$

Worked Example 1

Find:

(a)
$$\frac{3}{3.2+1.8}$$
 (b) $\sqrt{\left(\frac{5.2-3.6}{4.7}\right)}$

Solution

```
(a) Use the brackets as shown below
```


to obtain 0.6.

(b) Use brackets to enclose the top part of the fraction ,as shown below,

to obtain 0.5835 correct to 4 decimal places.

Worked Example 3

A factory produces plastic tanks in 4 different sizes. The table shows the orders placed one day.

Tank Size	Price	Number Ordered
Giant	£126	5
Large	£ 87	16
Medium	£ 56	44
Small	£ 33	31
Small	£ 33	31

Find the value of the orders, using the memory keys on your calculator.

Solution

- 1. First press (MC) to clear the memory.
- 2. For the *Giant* tanks, the value of the order is given by 126×5 . Find this on your calculator and press the (M+) key.
- 3. For the *Large* tanks, find 87×16 and press (M+) again.
- 4. For the *Medium* tanks, find 56×44 and press (M+) again.
- 5. For the *Small* tanks, find 33×31 and press (M+) again.
- 6. Finally press (MR) to obtain the total, which is £5509.

Exercises

- 1. Carry out the following calculations, using the bracket keys on your calculator. *Give all answers to 3 significant figures.*
 - (a) $4 \times (8.1 + 16.2) =$ (b) $(5.6 3.2) \times 11.4 =$ (c) $\frac{15.6 + 3.2}{5.3} =$

(d)
$$\frac{19+24}{16} =$$
 (e) $\frac{33}{127-84} =$ (f) $\frac{19+61}{20+32} =$

(g)
$$\sqrt{\frac{4}{9+24}} =$$
 (h) $\frac{14.1 \times 2}{18+4} =$ (i) $\sqrt{\frac{16+22}{18-4}} =$

(j)
$$\left(\frac{8.2+4}{13+7}\right)^2 =$$
 (k) $\frac{3+4.9}{7.32 \times 18.4} =$ (l) $\left(\frac{4.7-3.2}{8 \times 0.22}\right)^2 =$

- 2. Work through the flow chart of *Worked Example 2*, starting with a number of your own choice.
- 3. Find the mean of each set of numbers, using the brackets on your calculator.
 - (a) 15, 16, 17.5, 18, 20.
 (b) 22, 21, 32, 28.
 (c) 112, 114, 140, 130, 132, 126, 128, 110.
- 4. Use the flow chart shown in the diagram, giving final answers to 5 significant figures.

- (a) Work through the flow chart as shown.
- (b) Follow the flow chart but start with x = 2 instead of x = 1.

Start with x = 1

(c) How does this affect your final answer?

5. (a) Carry out the following calculation on your calculator inserting brackets where shown.

- (i) $(24 \times 2) + (12 \times 4) + (3 \times 15) =$ $24 \times 2 + 12 \times 4 + 3 \times 15 =$
- (ii) $(24+2) \times (15+3) =$ $24+2 \times 15+3 =$
- (iii) $(24 \times 2) \div (5 \times 3) =$ $24 \times 2 \div 5 \times 3 =$ $24 \times 2 \div (5 \times 3) =$
- (b) In each of the following decide which brackets, if any, could be missed out without changing the answer that would be obtained.

Check your answers with your calculator.

- (i) $(3 \times 6) + (5 \times 51) + (15 \times 2) =$
- (ii) $(3+6) \times (5 \times 2) =$
- (iii) $(3-4) \times (8-2) =$
- (iv) $(3+4) \div (5 \times 2) =$
- (v) $(3 \times 4) \div (5 + 2) =$
- (vi) $(3 \times 2) \div (4 \times 6) =$
- 6. The formula

$$A = 2\pi r(r+h)$$

is used to calculate the surface area of a drinks can.

- (a) Find A if r = 6 cm and h = 10 cm.
- (b) Find A if r = 3.7 cm and h = 7.4 cm.
- 7. The volume of plastic used to make a pipe is given by the formula

$$V = \pi l \left(R^2 - r^2 \right)$$

- (a) Find V if
 - (i) R = 25 mm, r = 20 mm and l = 3000 mm,
 - (ii) R = 3 cm, r = 2.4 cm and l = 500 cm.

The formula can be rearranged as

$$l = \frac{V}{\pi \left(R^2 - r^2\right)}.$$

(b) Find l if:

(i) $V = 800 \text{ cm}^3$, R = 5 cm and r = 4.5 cm.

(ii) $V = 100 \text{ cm}^3$, R = 1 cm and r = 0.8 cm.

8. Find the value of *f* using the formula

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

if u = 28.2 and v = 18.4. Give your answer correct to 3 significant figures.

9. The acceleration due to gravity, *g*, on any planet can be found using the formula

$$g = \frac{Gm}{d^2}$$

Find g if $G = 6.67 \times 10^{-11}$, $m = 7.4 \times 10^{30}$ and $d = 8.4 \times 10^{9}$. Give your answer correct to 2 decimal places.

10. Use a calculator to find the value of

(a)
$$\frac{3.86 + 17.59}{5}$$
 (b) $\frac{9.76 + 1.87}{18.3 - 15.8}$

(c)
$$\frac{330}{1.2 \times 5.5}$$
 (d) $\frac{1}{\sqrt{(0.16)}}$

(NEAB)

11. Use your calculator to evalulate

(a)
$$(2.37-8.42)^2$$
 (b) $\sqrt{(2.37-8.42)^2+17.42}$ (*MEG*)

Question 1
$$\frac{2.34 + 1.76}{3.22 + 1.85}$$
Question 2 $\frac{2.34 + 1.76}{3.22} + 1.85$ Question 3 $2.34 + \frac{1.76}{3.22} + 1.85$ Question 4 $2.34 + \frac{1.76}{3.22 + 1.85}$

Make a comlpete list of the amounts between 1 p and 99 p which cannot be made exactly.

Answers to Exercises

2.1 Introduction (b) 0.8 (c) 0.3 (d) 0.05 (e) 0.21 (f) 0.42 1. (a) 0.7 (g) 0.005 (h) 0.151 (i) 0.022 (j) 0.08 (k) 0.13 (1) 0.016 (m) 0.5 (n) 0.04 (o) 0.321 2. (a) $\frac{4}{10}$ (b) $\frac{3}{10}$ (c) $\frac{4}{100}$ (d) $\frac{32}{100}$ (e) $\frac{45}{100}$ (f) $\frac{6}{100}$ (g) $\frac{8}{100}$ (h) $\frac{14}{100}$ (i) $\frac{8}{1000}$ (j) $\frac{147}{1000}$ (k) $\frac{36}{1000}$ (l) $\frac{4}{100}$ (m) $\frac{1}{10}$ (n) $\frac{9}{1000}$ (o) $\frac{107}{1000}$ 3. (a) 5.6 (b) 3.3 (c) 7.8 (d) 6.42 (e) 7.17 (f) 3.73 (g) 4.6 (h) 4.8 (i) 3.16 (j) 3.94 (k) 10.2 (1) 1.4 5. (a) 1.51 (b) 0.424 (c) 0.282 (d) 0.839 (e) 1.102 (g) 0.858 (f) 0.281 (h) 0.738 (i) 0.372 (j) 11.87 (k) 12.291 (1) 17.48 (m) 8.73 (n) 130.65 (0) 50.006 (b) tenths (c) hundredths (d) tenths 6. (a) hundredths (e) thousandths (f) thousandths 7. (a) £5.16, £3.08, £4.56, £5.50 (b) £9.15 (c) £2.11 8. (a) £3.28 (b) £1.52 (c) £8.42 (d) £11.21 (e) £0.48 (f) £1.27 (g) £0.64 (h) £320.11 (i) £84.21 9. (a) £1.78 (b) £3.22 10. (a) £2.40 (b) £3.50 11. 1.87 12. 76 cm 13. 0.8 kg 14. (a) 5 (b) 5p 15. (a) 10.85 kg (b) 26.55 kg (c) 105 dollars

Answers Multiplying and Dividing with Decimals 2.2 1. (a) 47.4 (b) 632 (c) 4.16 (d) 1274 (e) 0.1658 (f) 3.24 (h) 4700 (j) 47000 (g) 630 (i) 32000 (k) 0.0068 (1) 0.82 (m) 0.192 (n) 0.014 (o) 180 2. (a) 36 (b) 1410 (c) 10500 (d) 132000 (e) 6000 (f) 10400 (g) 3.3 (h) 0.37 (i) 0.007 (j) 0.007 (k) 0.171 (l) 0.13 (m) 10860 (n) 23600 (o) 0.099 (p) 0.06 (q) 0.6 (r) 0.0035 3. (a) 40 (b) 2500 (c) 80 (d) 600 (e) 13 200 (f) 3100 (g) 5200 (h) 4000 (i) 700 (ii) 60 000 p 4. (a) (i) 360 p (iii) 4800 p (iii) £48 (b) (i) £3.60 (ii) £600 (c) 300 000 5. £124.87, £413, £107, £122.40 6. (a) 0.012 miles (≈ 21 yards ≈ 63 ft ≈ 760 inches ≈ 19 m) (b) (i) 5000 hours (ii) 90 hours 7. (a) (i) £108 (ii) £459 (iii) £810 (b) (i) £20 (ii) £88 (iii) £120 8. (a) 1500 (b) 500 9. 21 120 litres 10. (a) (i) £350 000 (ii) £560 000 (iii) £770 000 (b) 2000 11. (a) 540 (b) 50 12. (a) 6500 (b) 1037 (c) 7537 13. (a) $72 \times 100 = 7200$ (b) $60 \times 30 = 1800$ 14. (a) (i) 18 (ii) 81 (b) 261 Fractions and Decimals 2.3 1. (a) (i) 18.64 (ii) 19 (b) (i) 1024.84 (ii) 1000 (c) (i) 16.04 (ii) 16 (d) (i) 181.44 (ii) 180 (i) 16.82 (ii) 17 (f) (i) 0.08 (ii) 0.084 (e) (g) (i) 0.01 (ii) 0.0096 (h) (i) 4.84 (ii) 4.8 (i) (i) 3.86 (ii) 3.9 2. (a) 48 600 (b) 48 637.01 (c) 48 637.0125 (d) 48 640 (e) 48 637.012 (f) 49 000

Answers 3. (a) 0.0047 (b) 48.2 (c) 20 (d) 4.86 (e) 18.42 2.3 (f) 21.80 (g) 15 000 (h) 0.005 (i) 0.00418 (j) 15 700 (k) 55 000 (1) 31.4 (m) 14.18 (n) 0.82 (o) 1.841 (p) 15.0 (q) 14.170 (r) 201 (a) 40 000, 45 000, 44 900, 44 850 (b) (i) 2 s.f. (ii) 1 s.f. 4. 5. (a) 0.5 (b) 0.75 (c) 0.4 (d) 0.6 (e) 0.125 (f) 0.625 (g) 0.375 (h) 0.875 (i) 0.2 (c) 0.5714 (d) 0.1429 (e) 0.7143 (f) 0.8333 6. (a) 0.3333 (b) 0.1667 7. (a) 0.11111, 0.22222, 0.44444, 0.55556 (b) Recurring decimal which is the same as the numerator (c) 0.7777..., 0.8888... 8. (a) 0.09091, 0.18182, 0.27273, 0.36364 (b) 0.45455, 0.54545, 0.63636, 0.72727, 0.81818, 0.90909 (b) 0.096, $\frac{4}{5}$, 0.805, 0.8510. (a) 0.8 Long Multiplication and Division 2.4 1. (a) 345 (b) 684 (c) 513 (d) 9088 (e) 7308 (f) 15408 (g) 2548 (h) 1920 (i) 23 328 (j) 10 164 (k) 2352 (l) 5586 (m) 88 192 (n) 134 096 (0) 56 616 2. (a) 152 (b) 254 (c) 173 (d) 251 (e) 452 (f) 428 (j) 32 (1) 153 (g) 123 (h) 35 (i) 12 (k) 24 (m) 134 (n) 214 (0) 13 3. £2112 4. 700 5. 13 6. 350 kg 7. £333.33 (b) 7 ; 240 8. (a) 13 9. £154 10. (a) 35616 (b) 34132 11. 39 12. (a) 770 (b) (i) 19 (ii) 9

27

Answers **Estimating Answers** 2.5 1. (a) 50 (b) 20 (c) 30 (d) 10 (e) 20 (f) 100 (g) 60 (h) 0.2 (i) 0.04 (j) 2(k) 20 (1) 2 2. Approximate answers are: (a) 56 (b) 48 (c) 960 (d) 51 (e) 600 (f) 540 (g) 10 (h) 7 (i) 20 (j) 120 (k) 5 (1) 45 Actual answers are : (a) 56.01 (b) 54.20 (d) 53.51 (e) 623.4 (c) 1020 (f) 545.5 (i) 18.59 (g) 11.11 (h) 7.634 (j) 113.8 (k) 4.446 (1) 46.10 3. Approximate answers are: (c) 3 (d) 7 (a) 2 (b) 0.5 (e) 40 (f) 20 (h) 70 (g) 15 (i) 150 (a) 200 m (b) 233.28 m (c) 264.06 m 4. (a) Estimate 1200, Actual 1286 (b) Estimate 250 s, Actual 229 s 5. (a) About 40 ms⁻¹ 6. (b) 40.04, 39.67, 39.02 7. (a) 10 or 11, 11.08 km (b) about 480 km, 360 km 8. (a) Estimate £70, Actual £63.06 (b) Estimate $\pounds 30$, Actual $\pounds 24.86$ (c) Estimate £40, Actual £38.19 9. (a) Estimate 72, Actual 91.25 (b) Estimate 48, Actual 48.5 (c) Estimate 80, Actual 86.02 (c) 88 10. (a) 60×30 (b) 1800 11. No ; it should be $\pounds 7.02$ (accurate answer: $\pounds 7.03$) 2.6 Using Brackets and Memory on a Calculator 1. (a) 97.2 (b) 27.40 (c) 3.55 (d) 2.69 (e) 0.767 (f) 1.54 (h) 1.28 (g) 0.348 (i) 1.65 (j) 0.372 (k) 0.0587 (1) 0.726 3. (a) 17.3 (b) 25.75 (c) 124 4. (a) 5.5, 3.6591, 3.1960, 3.1625, 3.1623, 3.1623 (b) 3.5, 3.1786, 3.1623, 3.1623, 3.1623, 3.1623 (c) Both sequences are converging to 3.1623, which is $\sqrt{10}$, but using 2 converges more quickly.

	Answers
2.6	5. (a) (i) 141, 141 (ii) 468, 57 (iii) 3.2, 28.8, 3.2 (b) (i) $3 \times 6 + 5 \times 51 + 15 \times 2 =$ (ii) $(3+6) \times 5 \times 2 =$ (iii) & (iv) need all the brackets (v) $3 \times 4 \div (5+2) =$ (vi) $3 \times 2 \div (4 \times 6) =$
	 6. (a) 603.2 cm² 7. (a) (i) 2120575 mm³ (ii) 5089 cm³ 8. 11.1 9. 7.00
	10. (a) 4.29 (b) 4.652 (c) 50 (d) 2.5 11. (a) 36.6025 (b) 7.35 12. (a) Question 3(b) Question 213. (a) (i) $v = 120$, $u = 20$, $t = 5$ (ii) $a = 20$ (b) $=$ needed after 614. Last \times should be replaced by \div , or insert brackets around 3.2×0.47