Codes and Ciphers	UNIT 20 Enigma Cipher Lesson Plan 1	
Activity		Notes
1	Introduction	T: Teacher P: Pupil Ex.B: Exercise Book
	T: The Enigma cipher machine, which was invented in 1915, was used by the German armed forces to encrypt messages during the Second World War.Inside the machine were slots for 3 rotors; each rotor had letters A to Z with different internal wiring. The rotors could be taken out and changed and there were 5 different rotors for the 3 slots.	Discussion for T to find out what Ps might already know about Enigma. Use material from the Pupil Text to give background information.
	T: How many different ways are there of positioning 5 rotors in 3 slots? $(5 \times 4 \times 3 = 60 \text{ ways})$	The key aim here is to determine the total number of possible settings so that Ps can appreciate
	T: The rotor starting point could be any one of 26 positions (A to Z).How many different ways can you set the starting positions of the 3 rotors? $(26 \times 26 \times 26 = 17576 ways)$	the enormity of the problems encountered in cracking this code.
	T: Using the calculations we have just made, how many possible ways are there of setting up the rotors? (60×17576)	There should be interactive discussion here; if Ps have
	T: And that is? (1 054 560)	some simple problems for
	T: Yes – over a million different ways.	clarification.
	10 mins	
	 T: On the front of the machine was another variable section called the <i>plugboard</i>. This was used to further scramble the messages, and increase the possible number of ways the machine could be set up. The Enigma machine had several cables with a plug at each end that could be used to plug pairs of letters together on the plugboard. If A were plugged to B then upon typing the letter A, the electric current would follow the path through the machine that was normally associated with the letter B, and vice versa. 	It would be helpful to have access to Simon Singh's CD (see Teacher Resource Material) at this stage. This can be used to illustrate how both the rotors and the plugboard work. OS 20.1 can be shown to illustrate the plugboard.
	 T: If you had just one cable, in how many ways could the plugboard be set up? I'll let you have a few minutes to work this out. T: Who's ready to show us a solution? P₁ (on board): 25 + 24 + + 2 + 1 ↓ ↓ A with one B with one of the 25 other 24 other letters letters 	T monitors Ps' work, walking among them to see what they are doing and giving advice where necessary. If little progress is being made, T should intervene and begin checking the solution with the whole class, making sure that Ps understand the reasoning.
	T: Good. How can we solve this quickly? P ₂ : Use the formula $S_n = \frac{n(n+1)}{2}$ T: Well done. With	Volunteer Ps give solutions, P_1 writing on board; P_2 giving solution verbally with T writing on board.
(continued)	$S_{25} = 25 + 24 + \dots + 2 + 1$ $S_{25} = 1 + 2 + \dots + 25 + 26$ $2S_{25} = 26 \times 26 + \dots + 26 + 26$ $= 25 \times 26$	T writes on board.

Codes and Ciphers	UNIT 20 Enigma Cipher Lesson Plan 1	
Activity		Notes
2	T: So $S_{25} = ?$ (25 × 13 = 325)	Volunteer (or chosen by T) P
(continued)	T: That's the problem solved for just one cable. Now we'll look at more than one cable. Let's start with a plugboard with just 6 letters and 1, 2 or 3 cables.	gives the answer.
	T: How many connections can be made using 1, 2 or 3 cables?	Ps have up to 10 minutes for this activity but T should intervene if little progress is being made.
	T: Who's going to show us their answers and methods?	Discussion, with volunteer Ps
	T: What number of cables gives the largest number of connections? (2)	giving answers and others making suggestions if they disagree. Ps show their methods.
	T: Right. It's easier if we use a formula when we start looking for the number of connections for 26 letters!	T shows the formula on OS 20.2 and uses it to illustrate the method with $n = 6$, $m = 2$ as an example.
	T: The formula is $\frac{n!}{(n-2m)!m!2^m}$	
	T: In fact, the Germans used 10 cables, so $n = 26$ and $m = 10$.	
	Use the formula to work out the number of possible ways of connecting the 26 letters on the plugboard using 10 cables.	T gives Ps time to calculate this; perhaps one P could work at the
	T: Answer? $(About \ 1.5 \times 10^{14})$ T: Well done	w/board. Discussion and solution.
	35 mins	
3	Total number of settings	Interactive discussion at this
	T: Now we'll look at the total number of ways of setting up the electrical circuits on the three rotor Enigma machine.	stage; T introduces deciphering, with the use of a crib if time
	How do we do this?	anows.
	P: The total number is the number of set-up positions for the rotors × the number of ways of setting up the plugboard.	
	1: Let's use the actual numbers: $P_{1} = (c_{1} + c_{2} + c_{3}) + (c_{1} + c_{3} + c_{3})^{4}$	
	P: $(60 \times 17576) \times (1.5 \times 10^{-1})$	
	T: And this is approximately? (1.58×10^{20})	
	T: We can see that cracking the code was not easy!	
	Homework	
	Work through the section in the Pupil Text on 'Deciphering Enigma'.	Copies of Pupil Text pages 5, 6 and 7 distributed to Ps.